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Preface

This book provides an introduction to the interplay between stochastic pro-
cesses and algorithms, with a focus on applications in statistics and machine
learning. You will learn about core concepts and results concerning stochas-
tic processes, then use this machinery to design and analyze algorithms.
The primary applications will be to (large-scale) stochastic optimization
and to sampling from complex distributions — such as Bayesian posterior
distributions and energy-based models — using Markov chain Monte Carlo.
In addition to statistics and machine learning, the optimization and sam-
pling algorithms student in this book have diverse applications including
to problems in computer science, physics, chemistry, ecology, biology, and
operations research. As such, a strong emphasis will be placed on practical
implications of the results.

In light of our application-oriented motivations, the presentation of core
stochastic processes material focuses on intuitive understanding of definitions
and underlying theoretical results rather than their rigorous development
and proofs. This approach will allow us to begin more rapidly investigating
algorithms and their properties.

Expected Background You should be comfortable with vector calculus
(ideally with some exposure to ordinary differential equations), linear algebra,
and undergraduate probability theory. Previous exposure to ideas from
statistics or machine learning — regression, probabilistic models, Markov
chain Monte Carlo, (stochastic) optimization — is very helpful but not strictly
required.
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Notation

Conventions
e scalars are denoted by plain lowercase letters (a,b,c,...,n,7,...)
e vectors are denoted by bold lowercase letters (u,v,x,...,&,¢,...)
e matrices are denotes by bold uppercase letters (A, B,C,...)
e random variables are denoted by uppercase Roman letters (Y, W, ...

or X,Y,...) or greek letter variants (9, ¢, ...)

Acronyms and Abbreviations

GD: gradient descent

SGD: stochastic gradient descent

MCMC: Markov chain Monte Carlo

i.i.d.: independent and identically distributed

General

e 1(C): indicator function equal to 1 if condition C' is true and equal 0
if C is false

e x < y: assignment of the value y to the variable z in an algorithm

e r:=y: x is defined to be equal to y

e x =:y: y is defined to be equal to z

Sets and Numbers

N: the set of natural numbers {0,1,2,...}

Z: the integers {...,—2,—1,0,1,2,...}

R: the set of real numbers

R, : the set of nonnegative real numbers [0, 00)



vi

RP: the set of column vectors w = (u1,...,up)’ where ug € R
(: the empty set

P(£2): power set of Q

S¢ complement of the set S

[k]: the set of k integers {1,...,k}

Linear Algebra

T transpose

(u,v): inner product u'v for u,v € RP
|u||2: Euclidean norm of a vector u € R”
|Al|2: spectral norm of a matrix A € RP*K

Calculus

V¢ or ¢': gradient of the real-valued function ¢
V2¢ or ¢: Hessian matrix the real-valued function ¢
#®): pth derivative of the real-valued function ¢

Probability and Measure

e [E(): expectation
e P(-): event probability
e Lx: denotes the distribution (also called the law) of the random

variable X

e X ~ u: the random variable X has distribution u (i.e., Lx = p)

[ ]
(=%}
8

: the Dirac measure given by d5(A4) = 1(x € A)
d . C .
—: convergence in distribution
e convergence in probability
2% convergence almost surely (i.e., with probability 1)

Models and Loss Functions

A: parameter space, which will always be a subset of R

x € A: parameter value

L: A— R: loss function

Y,: the nth response or observation

z,: the covariates (i.e., features) associated with the nth response



vii

Optimization

e x,: optimum
e 7 step size at iteration k



Part 1

Preliminaries



Chapter 1

Optimization and Sampling

An optimization problem consists of finding the value that minimizes or
maximizes a target function. A sampling problem consists of obtaining
(approzimate) samples from a target distribution. A variety of running
examples of both problems which will be revisited throughout the book
are introduced. Gradient descent and stochastic gradient descent are
introduced as general-purpose algorithms for solving optimization prob-
lems. Markov chain Monte Carlo is introduced as a general approach to
solving sampling problems. Stochastic methods provide the mathematical
tools for the rigorous analysis of optimization and sampling algorithms,
and the design of new algorithms.

1.1 Optimization

One of the fundamental problems in data science is to fit a model, improve
an algorithm, or adjust a system by maximizing or minimizing a specific
objective function. In this book we will focus on examples where we have a
loss function £(x) arising from a model parameterized by « € A, where often
A C RP. If we had a reward function R(z) to maximize, we can equivalently
minimize the loss £(x) = —R(x), so considering only minimization problems
of the form

x, = arg min L(x)
x

is without any loss of generality.

First we consider some models for regression (also called supervised learn-
ing), where the goal is to predict a response y € Y C R given a vector
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of covariates (also called features) z € RP. The loss being minimized
depends on a labeled dataset D = {(yn, zn) }.

n=1*

Example 1.1.1 (Linear regression). We first consider the case where Y = R.
For example, the response is a child’s height and the covariates are the
mother’s height, father’s height, and child’s age. A widely used approach
to solving this problem is linear regression, where we define a regression
function ¢, (2,) = ' 2z, to use for prediction. The parameter x € R is
selected to minimize the reqularized squared loss function

N
1
L(x) = > (9e(zn) = yn)® + Aljl3
n=1
1 N
= = @ m - ) + Azl
n=1

where A > 0 controls the strength of the regularization.

Example 1.1.2 (Logistic regression). Nezt, we consider the common sce-
nario where Y = {—1,+1} with +1 indicating a “positive” example (e.g., a
patient who responds to treatment) and —1 indicating a “negative” example
(e.g., a patient who doesn’t respond to a treatment). The goal is to correctly
classify each observation as positive or megative using the covariates. A
canonical approach to such classification problems is logistic regression. The
regression function is the same as linear regression but now we minimize the
reqularized cross-entropy loss

N
1
L(x) = N Z log{1 + e ¥n9=(zn)} 4 X||z||2

n=1

N
1
= 5 2 log{1+ e =) 4 M.

n=1

Hence, the goal is to choose x such that 'z, is large and positive (respec-
tively, negative) if y, is positive (respectively, negative).

Example 1.1.3 (Support vector machines). Support vector machines (SVMs)
are very similar to logistic regression, except the hinge loss replaces the cross-
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Figure 1.1: Comparison of the hinge and logistic losses. See Examples 1.1.2
and 1.1.3 for details.

entropy loss:
1 N
L(xz) = i Zmax(o, 1= ynga(zn)) + A3
n=1

N
1
= >_max(0,1 — g z0) + A3

n=1

Figure 1.1 compares the logistic loss function log(1 + e~ %) to the hinge loss
max (0,1 —t), where t = ypgz(2n.

Example 1.1.4 (Artificial neural networks). Linear and logistic regression
can be generalized by replacing the regression function gz (zn) = €' 2, with
a more flexible one. A particularly important case is an artificial neural
network. Here we consider one of the simplest cases, a two-layer fully-
connected network parameterized by * = (W, b,3), where W € RDXD/,
beRY, and B € RP'. Given a nonlinearity o : R — R which we apply
component-wise to a vector (e.g., p(u) = (Pp(u1),...,d(up))), the regression
function is

9z (zn) = ,BTJ(WTzn +b).

Common choices for o are the rectified linear unit ReLU(t) := max(0,t),
hyperbolic tangent tanh(t) = (€2 — 1)/(e** + 1), and the logistic sigmoid
o) :==1/(e7t+1).
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Next we give some examples of unsupervised learning problems when the
data consist only of observations, so dataset is D = {y,}._;. The goal may
be density estimation (that is, learning the distribution of the examples)
or structure learning, where we wish to discover interesting structure in
the data. In all these cases we will first define a probabilistic model M
consisting of distributions with densities p,(z) for € A. The log loss for
the dataset is then given by

N
[’(m) = - Z Inga:(yn)'
n=1

Example 1.1.5 (Mixture models). Mizture models are used to cluster data
into distinct groups. For example, a Gaussian mixture model consists of
K > 1 components each with a Gaussian distribution N (g, i), where py, €
RP is the mean and X € RP*P is the (positive semi-definite) covariance.
We will write N'(y | u, X) for the density of a Gaussian distribution with
mean p and covariance 3. Each component has a weight 7y representing the
probability of an observation being generated by that component distribution.
Thus, we enforce wy > 0 and Zle wg = 1. The model complete parameter
isx = (w,pm1,..., 05, 21,...,Xx) and the probability of an observation y
gilven x s

K
(1.1) Pe(y) =Y wp Ny | pe, Zi).

k=1

Example 1.1.6 (Factor analysis). Another common type of unsupervised
model aims to explain each observation as the combination of a small number
of latent factors fi,..., fx € RP. For example, for the probabilistic
principal component analysis model, let F € RP*K denote the matriz of
latent factors and o > 0 denote the noise level, so the parameter is x = (F, o).
The probability of an observation y given x is

pe(y) =N(y | 0,FF" + o2I).

The loss functions in both the supervised and unsupervised examples can be
written in the form

N
(1.2) L(z) =) (@) + (),
n=1
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where £(,)(x) is the loss associated with the nth observation and r(x) is the
regularizer. For example, for the linear regression £,)(x) = ("2 — yn)?
and r(x) = A||x||3 while for the unsupervised learning examples £(,,) () =
—log pe(z,) and r(x) = 0.

Sometimes the loss can be minimized analytically.

Example 1.1.7 (Analytical solutions for linear regression and probabilistic
principal component analysis). For linear regression, let Z € RN*P denote
the matriz of covariate vectors and y = (y1,...,yn) denote the vector of
responses. Then x, = (Z'Z + NXI)™'Z"y. Or, for probabilistic principal
component analysis, let S = Z'Z /N, V € RP*E the matriz whose columns
are the first K eigenvectors of S, and A € RE*K s the diagonal matriz of the
corresponding eigenvalues, and A\g41,...,Ap are the remaining eigenvalues.
Then @, = (F,0,), where 02 = 5 Zc?:K—i—l Mg and Fy, = V(A — o2I)'/2.

However, there are two problems with relying analytic solutions. The first
problem is that, in most cases, an analytic solution is not available. This
is true of all remaining examples above, and many more we will encounter
later. The second problem is that computing the solution analytically
may be infeasible in practice, particularly when the dimension D is large.
Indeed, in linear regression it requires inverting the D x D matrix Z'Z
while in probabilistic principal component analysis it requires computing
the eigenvalues of the same matrix. Both of these procedures require ©(D3)
operations.

So, in practice, we typically rely on iterative numerical optimization methods
which repeatedly refine an approximation &, to the minimizer x, until the
approximation is sufficiently accurate. In the data science context, there
are four important criteria we will consider when designing optimization
algorithms and evaluating their usefulness:

Optimization Algorithm Criteria

1. General applicability. New models and loss functions are con-
stantly being developed. Therefore, we will focus on general-purpose
optimization algorithms, rather than specialized ones that exploit
distinct problem structure.

2. Dependence on dimensionality of x. Since x is often very high-
dimensional, we want methods with computational cost that is linear
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or nearly linear in the dimension D. In some cases this isn’t possible
(e.g., if computing £(x) requires ©(D?) operations); in such cases
we want the optimization algorithm to retain the same runtime
dependence.

3. Number of evaluations of £. When the dataset size is large or
calculating £ requires an expensive simulation (e.g., solving a system
of ODEs or PDEs), it is important to evaluate £(x) as few times as
possible.

4. Obtaining a statistically accurate of approximation. As seen
in the examples above, the loss is a function of the observed data.
Hence, we can view the loss as a noisy approximation to the ideal
loss function we would use if given an infinite amount of data. Since
the loss function is noisy, in practice it usually suffices to obtain a
relat/ively low-precision estimate of the optimum with error of order
N2,

Focusing on the case of losses in the form of Eq. (1.2), we can summarize
the optimization problem we wish to solve as follows:

Problem: Finite-sum Optimization

Design general-purpose optimization algorithms for computing an esti-
mate

N
Z, ~ x, = argmin L(x) = arg minz Ciny () + ()
xzcA zcA

n=1

in a way that is scalable to high dimensions and large datasets while
providing sufficient accuracy given the intrinsic noise of a finite dataset.

Since loss functions are usually differentiable, we can take advantage of the
fact that the negative gradient —VL(x) points in the direction of steepest
descent. A natural algorithm for minimizing the loss using gradient infor-
mation is gradient descent (GD).! Let xo denote an initial parameter
estimate (e.g., zero). Then for a sequence of positive step sizes {1 }ren, the

"'More sophisticated versions of gradient descent that use second-order information (e.g.,
Newton’s method) or approximate second-order information (e.g., L-BFGS) can converge
even faster. But this comes at the price of greater computational cost per iteration, often
with worse dependence on the dimension.
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—~— GD (15 epochs) % minimizer
SGD (1 epoch)
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Figure 1.2: Comparison of the iterate paths of gradient descent (GD) and
stochastic gradient descent (SGD) with 7, = 0.1 The contours show the loss
function being optimized. See Example 1.1.8 for the details of the setup.
Both algorithms are initialized at &y = (0,0). Although the GD path is
more “direct,” SGD converges to the region near the optimum about 30
times faster.

gradient descent update is given by
(1.3) Tt < Tk — N1 VL(T).-

Figure 1.2 shows the first few iterates of gradient descent for the problem
described in Example 1.1.8 below. Gradient descent has a number of attrac-
tive features. It satisfies our first two criteria since the only requirement is
that the loss is differentiable and usually the cost of computing the gradient
is roughly twice that of computing the loss itself (so the runtime dependence
on the dimension is essentially the best possible without assuming special
structure). It converges very quickly and there are good methods for adapting
the step size sequence (e.g., using a line search). However, the per-iteration
computational complexity of gradient descent is ©(NN). Thus, it fails to
satisfy criterion 3 and is impractical for many data science problems.

But is it really necessary to use all the data at each iteration? Or could a
rough estimate of the gradient using a small amount of data be nearly as good?
Recall that criterion 4 suggests we do not require an extremely accurate
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approximation of x,. So, rather than computing the gradient exactly, instead
consider estimating the loss and its gradient at each iteration by restricting
attention to a small “batch” of B observations selected uniformly at random
from D. At iteration k, denote the data indices that belong to the batch by
n(k,1),...,n(k, B) and denote the batch loss as

B
1
b D Ly (@) + (),
b1

so E{Li(x)} = L(x). Using Li(x) in place of L(x) in the gradient de-
scent update from Eq. (1.3) gives rise to the stochastic gradient descent
(SGD) algorithm with update

(1.4) Tpt1 — T — N VLE(2g).

The per-iteration iteration computational complexity of SGD is just ©(B).
Figure 1.2 illustrates the potential benefit of taking a faster but more mean-
dering path to the minimum.

Since SGD is noisy, we might consider averaging over iterates to decrease
this noise: at iteration k, define the iterate average over the most recent
50% of iterations by

(1.5) Ty = “{:/ 1 %;QJ xy.

We discard the first half of the iterates since we expect early iterates to be
far from the minimizer.

Example 1.1.8 (Empirical comparison of gradient descent and SGD). A
simple example suffices to provide an idea for how gradient descent compares
to its stochastic counterpart. Take D = 2 and generate N = 100 observations
independently according to®

nNN(O’I)a yn|anN(onznal)7

where o = (3,4) is the true parameter. Fig. 1.3(right) shows why averaging
can be beneficial for SGD when the step size is not very small. Fig. 1.3(left)
shows that, while gradient descent will outperform SGD when run for suffi-
ciently long and with a fairly precise choice of step size, it is notably more

2As would usually be done in practice, the responses were centered to have mean zero,
which in this case is equivalent to using the optimal intercept.
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Figure 1.3: (left) Comparisons of gradient descent (GD) and stochastic
gradient descent (SGD) with and without averaging. Computational effort is
measured in epochs, where one epoch is equivalent to accessing N observations
(so, 1 iteration of GD and N/B iterations of SGD). Squared error is the
squared Euclidean between the estimate and the minimizer x,. Both methods
are run for 50 epochs and averaging is over the last 50% of iterates. (right)
Histograms of the squared error between the last 50% of SGD iterates and .
In both plots, the expected squared error between the x, and true parameter
is 2/N = 0.02 while the actual squared error for true parameter (shown in
the histogram plots) is approximately 0.007.
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sensitive to the choice of .. Moreover, we expect the squared error ||, — o ||3
to be about D/N = 0.02 (for this dataset it is approzimately 0.007). So for
the purposes of either estimation or prediction, there is little benefit to ap-
prozimating x, to squared error of less than about 10™%. Thus, this example
suggests that for many statistical and machine learning applications, SGD
could provide sufficiently accurate solutions quite quickly.

While this example is suggestive of how SGD can work well, in practice
obtaining good performance with SGD is more complicated. In particular,
this book will address the following important questions:

Stochastic Optimization: Challenges and Questions

1. General guarantees. It is nice to see that empirically SGD works
well on some specific losses and datasets. But to deploy a method,
we would like general theoretical guarantees. So, in general, When
does SGD actually provide a good approximation to the min-
imizer? That is, under what conditions is SGD guaranteed
to work?

2. Parameter tuning. Usually we do not know the minimizer or true
parameter — if we did, it would be unnecessary to use SGD. Without
such knowledge, How should the tuning parameters be set to
achieve a desired behavior (e.g., level of accuracy)? For SGD,
these parameters are the batch size B, step size sequence {nj }ren,
and total number of iterations.

3. Algorithm design. SGD is a very simple — and maybe even a “naive”
— algorithm. Can we design more computationally efficient
algorithms that will work well on a wide variety of problems?
One approach is to consider fundamentally different algorithms. Or
we might consider adaptive algorithms that adjust the SGD tuning
parameters automatically.

To give an idea of why the last question is important, consider the following
example where, because the components of & are strongly correlated (i.e.,
the problem is ill-conditioned), SGD can become unstable or converge very
slowly.

Example 1.1.9 (GD and SGD performance on a loss function with elliptical
contours). Consider the same setting as Example 1.1.8 but with a different
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(a) n, = 0.1
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(b) nk = 0.4

Figure 1.4: Comparisons of gradient descent (GD) and stochastic gradient
descent (SGD) optimization of the squared Euclidean loss function with
correlated features. Computational effort is measured in epochs, as described
in Example 1.1.8. The top row utilizes a fixed step size of 0.1, which proves
adequate in the steeper regions (right column), but is much too small in the
flatter regions (left column). The bottom row increases the fixed step size to
0.4, which results in the opposite problem.
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data-generating process in which the components of z, are correlated:

1 —-0.9
zn ~ N(0,%), where Y= <_0'9 1 ) .

The highly correlated features result in a loss function with elliptical contours.
Figure 1.4 shows how the gradient along the bottom-left to top-right diagonal is
quite flat, while the gradient along the direction of the other diagonal is much
steeper. For GD and SGD, this means that the ideal step size varies drastically
depending on the current location in parameter space. For example, a larger
step size is needed to prevent stalling in the regions with flatter gradient.
Howewver, a larger step size can cause oscillation or even divergent behavior in
the steeper regions. Figure 1.4 demonstrates the dangers of naively choosing
a fixed step size, with the resulting algorithms either stalling or experiencing
oscillating behavior depending on the starting location.

1.2 Sampling

Other than optimization, perhaps the most common algorithmic challenge in
data science is computing expectations with respect to a target distribution
7 defined on a parameter or state space A. Specifically, given a vector-valued
function ¢ : A — RM | we wish to calculate the expectation

7(¢) i= Exn{$(X)} = / ) (x)de.

For example, we might want to compute the mean p using ¢(x) = x, the
covariance using ¢(x) = (& — ) (x — p), or a predictive p.d.f. at y using
d(x) = pg(y) where {pg}zea is a family of predictive distributions. In the
rest of this section, for simplicity we will focus on real-valued functions

p: A—R

Most of the examples we will consider are from Bayesian statistics. As-
sume we have observations ) and side information Z (such as covariates
in a regression). We would like to learn a conditional model for ) given
Z. To do so, we choose a family of distributions called the observation
model parameterized by & € A, which we assume has a conditional p.d.f.
p(Y | , Z). We must also choose a prior distribution for the parameters,
which we also assume has a density mo(x). The prior distribution encodes
any available information about what parameter values are a priori most
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plausible. Together, they define a conditional joint distribution given by
gV, x| Z2) =p(Y |z, Z)mo(x).

Since we know ) and Z, we can determine the conditional distribution of the
parameters given ) and Z, which is called the posterior distribution. The
posterior represents our updated beliefs about the most plausible parameter
values given the observed data. Letting p(Y | 2) := [p(V | , Z)mo(x)dx
denote the marginal likelithood, the posterior distribution has density

g Vx| 2) _ p(Y |z, Z)mo(x)

@Y 2) =S5z T s 2)

So, in the Bayesian setting, we take 7(x) = w(x | Y, Z)

We first revisit the regression setting discussed in the previous section with
responses )V = {y, }N_,, where y,, € Y, and covariates Z = {z,}_,, where
z, € V.

Example 1.2.1 (Generalized linear models). Linear regression and logistic
regression (Examples 1.1.1 and 1.1.2) are both generalized linear models
(GLMs). In a GLM, the parameters are x = (B3,), where 8 € RP are
the regression coefficients and 9p € V C RM are additional parameters.
Observations are assumed independent and their response depends on the
covariates only through the inner product 8"z, so the observation model can
be written as

N

p(Y |2, 2) =[] pwn | B" 20, %)

n=1

Table 1.1 summarizes some common GLMs. Common prior distributions for
the components of 3 include independent N'(0,s?) distributions or T (0,52, v)
distributions, where the latter is a mean-zero t distribution with v degrees of
freedom. The linear function B z, can also be replaced by a more complicated,
nonlinear function such as a neural network (see Example 1.1.4). Placing
a prior on the neural network parameters results in a Bayesian neural
network model.

Next we revisit an unsupervised example from Section 1.1, where ) =
{yn},]:le and there are no covariates, so we drop dependence on Z from our
notation.
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Regression type Y () observation model p(y | t, )

Gaussian linear R o2>0 yl|lz~N(Bz,0?) N(y|t,o?)

Robust linear R $2>0, ylz~TB 2,8%v) Tyt s%v)
v>0

Logistic {£1} 0 y |z~ Bern(p(B872)) Bern(y | ¢(t))

Poisson N 0 y | z ~ Poiss(8 z) Poiss(y | €')

Table 1.1: Common generalized linear models. Note: p(t) = 1/(e7t+1)
denotes the logistic function.

Example 1.2.2 (Mixture models). Building on Example 1.1.5, the observa-
tion model for a Gaussian mizture model is given by

N
pQV @) =[] pelyn),
n=1

where pg, is defined in Eq. (1.1). A Bayesian mizture model requires choosing a
prior for the parameter vector . A common choice would be a factorized prior
mo(x) = mo(w) Hle mo(pr)mo(Xg). For example, one might set mo(w) =
Dir(w | ), mo(pe) = N (e | 0,52I), and 7o(X) = W(Z | v, Xg), where Dir
denotes the Dirichlet distribution, W denotes the Wishart distribution, and
the priors require the choice of hyperparameters o € Rf, >0, v>D—1,
and Xg € RPXP positive semi-definite.

In all these examples, the observations are assumed independent, so the log
of the observation model density — often called the log likelihood when
viewed as a function of the parameter  — can be written as

N

logp(V |2, 2) =Y (),

n=1

where ¢, is the log likelihood associated with the nth observation in the
dataset. In the regression setting, for example, {(,)(z) = log p(yn | zn, )
while in the unsupervised setting £(,)(x) = log pz(yn)-

As with optimization, there are special cases where the posterior distribution
can be computed in closed form.?> However, these solutions require very
specific choices of prior distributions, which may be inappropriate. And, as

3See Section 7.6 of Murphy (2012) for the case of Bayesian linear regression.
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with optimization, the computational cost often scales poorly with dimension.
So, in general, we can usually only assume that the posterior density can be
calculated up to the unknown marginal likelihood constant p(D | Z) through
the pointwise evaluation of g()),x | Z). While other approaches exist?, we
will focus on sampling methods that involve generating a set of samples
x1,...,x and approximating the expectation 7(¢) by

|

1 k
fn() == > dl@e).
=1

In the data science context, the same four criteria we described for opti-
mization algorithms apply (with some modification) when evaluating and
designing sampling algorithms:

Sampling Algorithm Criteria

1. General applicability. New models are constantly being developed.
Therefore, we will focus on general-purpose sampling algorithms,
rather than specialized ones that exploit distinct problem structure.

2. Dependence on dimensionality of x. Since « is often very high-
dimensional, we want methods with computational cost that is linear
or nearly linear in the dimension D. In some cases this isn’t possible
if, e.g., (¥, z | Z) requires ©(D?) operations to evaluate; in such
cases we want the sampling algorithm to retain the same runtime
dependence.

3. Number of evaluations of g(),x | Z). When the dataset size is
large or calculating £ requires an expensive simulation (e.g., solving a
system of ODEs or PDEs), it is important to compute g(),x | Z) as
few times as possible. In the sampling context we must also be careful
about how the number of evaluations increases with the dimension.

4. Obtaining a statistically accurate approximation. Usually we
would like 7 (¢) to converge to 7(¢) as k — oco. In practice we usually
want the error of the approximation to be small relative to Var,(¢),
the variance of ¢(X) for X ~ 7.

We can summarize the sampling problem we wish to solve as follows:

4For example, see Chapters 21 and 22 of Murphy (2012)
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Problem: Sampling with Unnormalized Densities

Design general-purpose sampling algorithms that, given a target distri-
bution 7(x) that can only be evaluated pointwise up to a multiplicative
constant, computes an estimate

in a way that is scalable to high dimensions and large datasets while
providing sufficient accuracy relative to Var; (o).

When D is small, quasi-Monte Carlo and numerical quadrature meth-
ods can provide fast, accurate approximations of integrals. However, they
are limited to low-dimensional settings because their approximation error
grows exponentially in D (unless special problem structure can be exploited).
A typical error bound for a k-sample approximation would be of order
log(k)P*!/k. Thus, these methods tend to become impractical when D > 8
and so fail to satisfy criterion 2.

If it is possible to generate independent samples from 7, then simple Monte

Carlo may be used instead. If @y, ...,z are i.i.d. samples from 7, then by
the law of large numbers,
(1.6) lim 7y (¢) = m(¢)

k—o0

as long as Ex.{|#(X)|} < co. Simple Monte Carlo is attractive since the
estimate 7% (¢) is unbiased and, if Var;(¢) < oo, the central limit theorem
implies that

(1.7) K2 {7(8) — m(9)} S N(0,02),

where % denotes convergence in distribution and aé := Var,(¢). Therefore,
the expected approximation error E{|7;(¢) — m(¢4)|} is upper bounded by
o4/ k2, so k need not be too large to ensure small error relative to the
variance.

Hence, simple Monte Carlo satisfies criterion 4. Moreover, since the error is
independent of the dimension, it is effective in high-dimensional problems,
thereby satisfying criterion 2. However, in most problems of interest it is
impossible to generate independent samples, so simple Monte Carlo fails to
satisfy criterion 1.
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1.2.1 Simple Monte Carlo

While simple Monte Carlo has limitations, it remains an extremely value
method that provides an important baseline when comparing to alternatives.
Let 7x(¢) be the simple Monte Carlo estimator of 7(¢), the empirical mean of
samples xq, 1, ..., T} I8 . We will examine the error between the random
variable 7;(¢) and the true expectation 7(¢). First note that 7;(¢) is an
unbiased estimator since

N

= > (o ),

/=1

??‘\»—l

E{fr(0)} =+ ZE{¢ ()}

following from the linearity of expectation and the assumption x, ~ m, but
not requiring the independence assumption. The Monte Carlo error in this
context is defined as the expected squared difference between 7x(¢) and 7(¢),
which is equivalent to the variance of the estimator

E{[#1(¢) — m(¢)]} = Var{#x(¢)},

following from the unbiasedness of 7;(¢). Since the summands ¢(x/) are
independent, the variance operator can be passed inside the summation to
obtain

k
1 o
(1.8) Var{7(¢ k:2 g Var{¢(xz/)} = e E 03) = %

We have established that the expected squared error of a simple Monte Carlo
estimate decays at rate k~1.% Since this is on the squared scale, one commonly
hears that the simple Monte Carlo error rate is k~'/2. Importantly, this
rate is independent of the dimension D.® While unbiasedness and the above
variance expression hold for any finite k£, Eq. (1.6) provides the important
asymptotic justification that the simple Monte Carlo estimate approaches the
true expectation as k — oco. In practice, we utilize a finite set of k£ samples
and thus it is essential to quantify the error in the estimate. Eq. (1.8)
provides a useful start, giving a notion of how “spread out” the error may

5The expression for the simple Monte Carlo variance reveals that there are two options
for reducing the error: decreasing Uﬁ or increasing the number of samples k. There are
many so-called variance reduction methods that seek to accomplish the former.

SWhile it is true that the error rate is independent of D, it is misleading to say that
simple Monte Carlo methods are immune to the curse of dimensionality. Often, the cost of
drawing i.i.d. samples from 7 scales poorly with D.
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be, but provides no information on the shape of the error distribution. For
large enough k, the central limit theorem Eq. (1.7) provides this information,
allowing for the construction of (approximate) confidence intervals. Indeed,
the central limit theorem

implies convergence of distribution functions. Thus, letting Z ~ N(0,1) and
zZo € R we have

TE(¢) — (o
p{—za < W < za} S P{—20 < Z < 24}

For a 100(1 — a)% confidence interval, choose z, such that P{—z, < Z <
Za} = 1 — a. Then we obtain

OpZa Op2a

(1.9) P{frk(@ — 2 <m(9) < m(9) + T } S 1-a

For finite k, the interval [frk((ﬁ) - 7:{7;‘ k() + ‘jjjg‘ } is thus an approximate

100(1 — a)% confidence interval.” Note that o4 is typically unknown, so to
construct this confidence interval in practice it is common to replace o4 with
its empirical estimate.

Example 1.2.3 (Simple Monte Carlo Error Analysis). Figure 1.5 illustrates
how the error in simple Monte Carlo estimates change with sample size. The
sampling distribution of 7i(p) is explored by independently replicating the
experiment many times for varying sample sizes k.

1.2.2 Markov chain Monte Carlo

Since simple Monte Carlo is usually not possible, instead of attempting
to generate perfect samples (that is, samples with exactly the distribution

It is important to recall the proper interpretation of confidence intervals. The bounds
of the confidence interval are the random variables under consideration here, while the
value 7(¢) is fixed. Thus, the statement Eq. (1.9) should be interpreted as follows. Suppose

we sample xo, x1,...,Tk i m, form the estimate 7, (¢), and construct the associated
100(1 — @)% confidence interval. Now repeat this experiment independently many times,
constructing a confidence interval each time. Then approximately 100(1 — )% of these
intervals will contain the true expectation ().
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Figure 1.5: Simple Monte Carlo error results summarized over an ensem-
ble of independent replicate experiments. The target distribution 7 is a ¢
distribution with 3 degrees of freedom. We consider ¢ to be the identity
so that 7(¢) is simply the mean of the ¢ distribution, which is equal to
0. For each sample size k, 10,000 experiments were conducted, resulting
in 10,000 samples from the sampling distribution of 7x(¢). (top) Samples
from the sampling distribution of 7;(¢), demonstrating the convergence of
the estimate as k — oco. The plotted error bars m(¢) + :f—f;
strate the k~1/2 convergence rate. (bottom left) Histograms of samples of
7 (@) for different samples sizes k. The decreasing spread of the sampling
distribution as k increases provides another demonstration of convergence,
while the approximately Gaussian shape of the distributions illustrates the
predictions of the central limit theorem. (bottom right) An alternative
view of the central limit theorem in action. The theoretical quantiles of the
standard normal distribution are plotted against the empirical quantiles of
the normalized sampling distributions of 7 (¢) at various sample sizes. Even
small sample sizes show reasonable agreement between the distributions, but
larger sample sizes are required for the tails of the distributions to agree.

help to demon-



CHAPTER 1. OPTIMIZATION AND SAMPLING 21

m), we can instead aim for a less ambitious goal similar in spirit to the
iterative optimization approach of repeatedly improving the quality of an
approximation. Specifically, we generate a random sequence of iterates
xg,x1,... such that the distribution of the iterates gets closer and closer to
7. This is the key idea of Markov chain Monte Carlo (MCMC), which
is a flexible and broadly applicable alternative to simple Monte Carlo. In its
simplest form, given all previous samples, the distribution of x;,1 depends
only on xj. Thus, the behavior of the MCMC algorithm depends on just the
initial distribution of &y and the family of conditional distributions ¢(x | «’).
As in stochastic optimization, we can discard the early iterates, which we
expect to have a distribution far from 7. For example, paralleling Eq. (1.5),
we can use the most recent 50% of iterations to construct the estimator

T(9) 1= k:/2+1 Z ¢(@e)-

t=1k/2]

While both simple Monte Carlo and MCMC estimate expectations via
empirical averages, it is important to keep in mind the fundamental differences
between the two approaches. Simple Monte Carlo forms estimates using
i.i.d. samples. But MCMC samples are neither independent nor identically
distributed. This leads to various practical and theoretical challenges, but
the applicability of MCMC in a wide array of settings where simple Monte
Carlo is infeasible justifies these additional challenges. In Example 1.2.3 we
examined the Monte Carlo error when the estimator 7;(¢) was computed
using i.i.d. samples. We now consider the same estimator but constructed
using samples xg, x1, ...,z produced via MCMC. The first issue to tackle
is that the samples are no longer identically distributed according to .
Rather, the marginal distribution of x; approaches m as £ — oo. Thus,
while the MCMC estimate 7x(¢) may be biased for finite sample size k, this
bias vanishes as k — oco. In practice, there are a variety of diagnostics to
assess whether the chain has converged to the target distribution. When
constructing the estimator 7x(¢), we exclude these early samples deemed to
have been obtained prior to convergence. This early portion of the iterates
is often referred to as the burn-in.

Yet even in the idealized scenario where &y ~ 7 (perhaps after re-indexing
to zero after dropping burn-in samples) so the estimate is unbiased, the
samples xg, x1, ..., are still correlated. This lack of independence prevents
exchanging the order of the variance and summation as in the simple Monte
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Carlo variance calculation. Instead, we obtain
1 k
Var{7ix(¢)} = 5 Var{Z ¢(w5)}

=13 ZVar{¢ (xy) }—|— ZCOV{¢ (ze), (o)}
>0
o2

_ f +2 i ijg Cov{¢(xo), p(xr)}
=1

where the final inequality uses the assumption xq, x1, ..., xg, ~ 7. We notice
the first term is precisely the simple Monte Carlo error given in Eq. (1.8),
while the second term accounts for correlation in the samples. In theory, this
correlation could be negative and hence result in smaller error. However, in
practice this term is almost always positive and hence represents a penalty
on top of the typical simple Monte Carlo error. This is the price to be paid
for using correlated samples, which carry less information than an equal
number of independent samples. Therefore, common diagnostic tests for
MCMC involve investigating the autocorrelation Cov{gb(a:o),gb(a:g)}/ai
for different values of the lag ¢. Autocorrelation that decays very slowly as
¢ increases is a reason for concern. In practice, Cov{¢(xo), ¢(x¢)} is not
known so must be estimated empirically using the MCMC samples.

Example 1.2.4 (Comparing Simple Monte Carlo to MCMC). Figures 1.6
and 1.7 compare MCMC to simple Monte Carlo, continuing from the example
presented in Example 1.2.3 of estimating the mean of a t distribution with 3
degrees of freedom. While MCMC requires more samples to obtain accurate
estimates of expectations, it still provides a good approximate after removing
the burn-in samples.

While this example shows the potential utility of MCMC, is also hints at some
of the complications with using it in practice and analyzing the convergence
and approximation properties of MCMC algorithms.

MCMC: Challenges and Questions

1. General guarantees. As with SGD, it is good to see MCMC seems
to work on some specific problems. But we would like general the-
oretical guarantees so we can have confidlence MCMC will work on
new problems. In particular, When does an MCMC algorithm
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(b) First 200 MCMC samples after burn-in compared to a sequence of
i.i.d. Monte Carlo samples.

Figure 1.6: MCMC versus Monte Carlo samples. The setup is the same as
Example 1.2.3, with target distribution 7 a t distribution with 3 degrees of
freedom and mean 0. However, we consider here only a single experiment, as
opposed to the previous example which analyzed an ensemble of independent
replicates. (top) The complete set of MCMC samples. The Markov chain
was initialized in a location far out in the tails of w. The chain takes a few
thousand iterations to reach the region of high probability. This initial set
of samples is typically dropped in order to reduce the error in the estimate
7 (¢). While it visually appears that dropping the first 3,000 samples
would be sufficient, in the following plots we conservatively drop the first
10,000 samples as burn-in. (bottom) The first 200 samples retained after
dropping the burn-in samples compared to i.i.d. samples. By zooming in, the
correlation between the MCMC samples compared to the lack of correlation
in the i.i.d. samples is more noticeable.
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Figure 1.7: Comparing simple Monte Carlo with MCMC. The setup is the
same as Fig. 1.6. All plots are constructed by excluded the first 10,000 MCMC
samples, which are dropped as burn-in. (top) Comparing the convergence
of the estimate 74 (¢) for simple Monte Carlo and MCMC. (bottom left)
Estimates of the MCMC autocorrelation Cov{¢(xo), (b(mg)}/a?j) at different
lags ¢. (bottom right) Histograms of the simple Monte Carlo and MCMC
samples compared to the density m(z).
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satisfy a law of large numbers and a central limit theorem?
Because the samples we use are dependent, these questions are sig-
nificantly more challenging to answer than for simple Monte Carlo
where the samples are independent.

2. Parameter tuning. Usually a given MCMC procedure has a variety
of tuning parameters (number of iterations, step size, etc.). How
should the tuning parameters be set to achieve a desired
level of approximation accuracy for expectation estimates
in the most computationally efficient manner?

3. Algorithm design. There are innumerable MCMC algorithms that
could be used to sample from a particular target distribution. But
some algorithms may be orders of magnitude more efficient. How
do we design computationally efficient algorithms that will
work well on a wide variety of problems? As with stochastic
optimization, we might consider adaptive algorithms that adjust the
MCMC tuning parameters automatically.

1.3 Stochastic Methods

SGD and MCMC are both examples of randomsized iterative algorithms.
By iterative we mean they repeatedly update some state x over and over
again, only stopping after a fixed number of iterations or after some stopping
criterion is met. They are randomized (a.k.a. stochastic) in the sense that each
iteration used some external source of randomness (or pseudorandomness).
Hence, each time the algorithm is run the result is different. These features
means we can view both types of algorithms as stochastic processes. Hence, we
can use the theory of stochastic processes to analyze algorithm behavior and
what effect various tuning parameters have on algorithm performance. We
can also use stochastic process theory to design new algorithms. For example,
we can construct an “ideal” stochastic process, then numerically approximate
the process to arrive at an implementable algorithm. It will often be fruitful
to analyze such an algorithm by comparing it to the originating stochastic
process or some other “simpler” process that’s easier to understand. In
short, the themes of the class will be to (1) start with a stochastic process
and use it to design an algorithm, and (2) start with an algorithm, and use
stochastic process methods to analyze it. As a practical matter, this will
require us to use tools from probability theory, of which stochastic processes
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is an important subfield, and stochastic analysis, which combines ideas from
probability theory and calculus. We refer to all these mathematical tools
together as stochastic methods: hence the title of the book. Sometimes
these tools will be quite advanced. So, rather than developing them from the
bottom up — as you might do in a typical probability theory or stochastic
processes course — we will mostly take them as given, then apply them to
design and analyze algorithms. As such you might think about this course
as being a mix of “applied probability” and “analysis of algorithms”:

Probability Theory +
Stochastic Analysis
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Applied Probability
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Analysis d > Design
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Chapter 2

Probability Theory

A concise review of probability theory using measures — but without
measure theory. The focus is on intuitions and important results rather
than proofs and careful treatment of technicalities.

Before diving into stochastic process theory and other stochastic methods, we
review the necessary probability theory background. We operate at a level of
technical sophistication greater than what is seen in the typical introductory
undergraduate probability theory courses but short of a graduate-level,
measure-theoretic treatment.

2.1 Events and Probabilities

The usual starting point for probability theory is to define a set of possible
outcomes for an “experiment,” which should be interpreted in the broadest
terms possible. For example, the temperature tomorrow at noon, the outcome
of a roll of a dice, the card I select at random from a deck, or the distance I
bike today are all experiments. In all these cases, there are many possible
outcomes.

Definition 2.1.1 (Sample space). A set of all possible outcomes of an
experiment s called the sample space.

We will follow tradition and denote the sample space by (2.

Example 2.1.2 (Coin flipping). If we flip a single coin, there are two possible
outcomes, heads or tails, which we denote as H and T. Thus, Q = {H, T}. If

27
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instead we flip 8 coins in a row, the sample space is all 8 possible combinations
of three heads and tails: Q@ = {HHH,HHT HTH,HTT, THH, THT, TTH, TTT}.

Example 2.1.3 (Selecting a card). If we select a card at random from a
standard 52-card deck, Q) has 52 elements, one for each card. Recall that a
card has one of 4 possible suits (heart, diamonds, spades, clubs) and and 13
possibles ranks (ace, 2 through 10, jack, queen, king).

In the coin flipping example, we might be interested in whether (a) there
are no heads or (b) whether there are at least two tails. Each of these can
be represented as a set of possible outcomes S: (a) S = {TTT} and (b)
S ={HTT,THT,TTH,TTT}. A set S C Q is called an event. We will
write P(S) to denote the probability of the event S. More precisely, for an
arbitrary set S, define the power set P(S) := {S' : S’ C S}, the set of
all subsets of S (noting that S is a subset of itself). Hence, P is in fact a
function P: P(Q2) — [0, 1].

We would like to define the probability of events in a self-consistent way,
which leads to the two axioms of probability. The first is based on the
idea that some outcome in the sample space must happen, so

(Axiom 1) P(Q) = 1.

The second axiom relates the probabilities of different events. It is motivated
by the observation that if S, S’ C Q are disjoint (that is, SN .S" = @), then
the event S might happen or the event S’ might happen, but both events
cannot happen. Therefore, probability of S U S’ should be equal to the
sum of the respective probabilities of S and S’. To allow for the possibility
of considering more than two events, instead consider pairwise disjoint
events S1,Se, -+ € P(2), meaning that S;N.S; = 0 if ¢ # j. We require that

(Axiom 2) for pairwise disjoint S1, Sa,--- € P(Q), P(U;>15;) = ZIP’(SZ-).
i>1

The axioms imply results like P(()) = 0 which match with the intuition that
the probability that nothing happens should be zero.

Lemma 2.1.4. The probability of the null event is zero: P(()) = 0.

Proof. Assume P()) = a > 0. Then using Axiom 2 we have a = P(())
POUD) = PO) UPD) = a+ a = 2a. But if 2a = a, then a = 0,
contradiction.

™)
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Exercise 2.1.1 (Probability formulas). Show that (a) for any S € P(2),
P(S¢) =1 —P(S) and (b) for any S,S" € P(Q), P(SUS") = P(S) +
P(S") —P(SNS).

2.2 Random Variables

After defining events, the next step is to define a random variable X : ) —
R. We can then define events related to the value of the random variable.
For example, the event that X is between a and b would be

S={weQ: X(w) € [a,b]}.

More generally, the event that X € A C R can be written using the function
inverse notation

X 1A)={weQ: X(w)ec A}.
The probability of this event is P(X1(A)) =: P{X € A}.

Introductory probability theory courses usually introduce two kinds of ran-
dom variables: discrete and continuous. Each kind is based on a different
assumption about the form of P{X € A}. Given a function ¢: R — R,
this special form is then used to define the expectation E{¢(X)}, which
informally is the value that ¢(X) takes “on average.” The definitions used
in the discrete and continuous cases are reasonable but also ad hoc.

2.2.1 Discrete Random Variables

A discrete random wvariable Y: ) — R takes on only a finite or count-
able number of values V' and is fully determined by its probability mass
Junction (p.m.f.) py: V — [0, 1], which must satisfy >° ., py(y) = 1. In
particular, we set P{Y =y} = py(y). Using Axiom 2 we can determine the
probability of any event A as

(2.1) Pyeal= 3 m(v).
yeANV

The expectation of ¢(Y) is defined as

(2.2) E{o(Y)} = é(y)py (y).

yeVv
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Example 2.2.1. The Bernoulli distribution Bern(q) with parameter q €
[0,1] has the p.m.f. ppem(g): ¥ — ¢¥(1 — q)' 7Y, where x € {0,1}. We write
Y ~ Bern(q) to denote that' Y has a Bernoulli distribution. The expected
value is given by E{¢p(Y)} = #(0)(1 — q) + ¢(1)g.

Example 2.2.2. The binomial distribution B1n0m( q) with parameters
neNandqe[Ol] has p.m.f. PBinom(n,q) (Z) (1 —q)"Y, where
y € {0,...,n}. For a binomial mndom vamable Y ~ Binom(n,p) and
BCR,

PYeB = Y (Z) P(1— g,

yeBN{0,...,n}

Note that Binom(1, q) = Bern(q). We write Y ~ Binom(n, q) to denote that
Y has a binomial distribution. The expected value is given by E{¢p(Y)} =

D=0 W) ()’ (1 — )" Y.

2.2.2 Continuous Random Variables

A continuous random wvariable X on R: Q — R is determined by its
probability density function fx: R — [0,1] that satisfies [ fx(z)dz = 1.
The probability of X € A is defined as

P{X € A} := /AfX(x)dx

The expectation of ¢(X) is defined as

(23) B(6(0)} = [ (o) fx (@)
The definition is similar to the discrete case but using an integral, which we

can think of as the continuous equivalent of a sum.

Example 2.2.3. The Gaussian distribution N(u,o?) with parameters
p€R and o > 0 has density

1 _(z=p)?

fN(u,UQ)(:E) = \/We 207

Of course for X ~ N(p,0?), the mean is equal to E(X) = u and the variance
is E{(X — p)?} = o2.
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Example 2.2.4. Define the indicator function 1(C) to be equal to 1 if
condition C' is true and equal 0 if C is false. The exponential distribution
Exp(\) with rate parameter \ > 0 has density

Frxpoy (@) = Ae 1 (z > 0).

For X ~ Exp()), the mean is equal to E(X) = A\~! and the variance is
E{(X - A1) =X"2

2.3 A Unified Approach to Random Variables

Having separate definitions for discrete and continuous random variables
turns out to be rather awkward.

Example 2.3.1. Consider the distance I bike tomorrow as a random variable
X. There 1s usually some positive probability I will not bike, in which case
the distance I bike is zero. But if I do bike, the distance I bike is best captured
by a continuous distribution. However, with the tools from introductory
probability, I cannot define such a “biking distance” random variable since it
1s meither discrete nor continuous, but a mix of the two.

Situations with such “mixed” random variabels are quite common. For
example, the random variable for the amount of rain tomorrow would have a
similar behavior: there is some positive probability of no rain; but if there is
rain, the amount of rain has a continuous distribution.

It turns out there is a solution to this problem that may appear simplistic
but turns out to be a very powerful approach: rather than think of a random
variable X as being defined by its p.m.f. or p.d.f., we can simply think of it
being determined by the values of P{X € A} for all possible A € P(R).! We
can summarize these probabilities by defining a function p: P(R) — [0, 1]
given by

(A) = P{X € A)}.

Such functions satisfy the same axioms as P does (see Lemma 2.3.4 below),
and are generically referred to as probability measures.

!Technically, we need to limit ourselves to subsets that belong to an appropriate o-
algebra. But we will ignore these (important) details because any reasonable set you can
think of will be allowed.
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Definition 2.3.2 (Probability measure). Given a sample space 2, a function
p: P(Q) — [0,1] is called a probability measure (or distribution) if
(a) n(2) =1 and (b) for pairwise disjoint S1,Sa,--- € P(Q),

p1(Ui>155) ZM

i>1

The pair (Q, 1) is called a probability space.?

Notice that the definition of a probability measure does not require any
particular choice of Q. For example, we could have Q =R or Q = RP. But
we could also choose Q =Z x R or Q = {H, T}. This generality motivates
the following definitions and naming conventions.

Definition 2.3.3 (Random variables and distributions). Given a probability
space (2,P) and set A, a random element (or random variable) is
a function X: Q — A. The probability that X takes on a value in a set
AeP(A) isP{X € A} =P{{w € Q : X(w) € A}). The distribution
(or law ) of a random variable is the probability measure Lx: P(A) — [0,1]
defined as Lx(A) :=P{X € A} for all A € P(A). If p = Lx, then we write
X ~u (read: “X has distribution p”).

Lemma 2.3.4. The law of a random variable is a valid probability measure.
Proof. We prove that Definition 2.3.2(a) holds and leave verification of

Definition 2.3.2(b) as an exercise. Since X (w) € A for all w € Q it follows
that

{weQ: X(w)e A} =0Q

By the definition of £x and the assumption that IP is a probability measure,
we therefore have that

Lx(A) =P{X € A}
=P{weN: X(w)e A})
=P(Q)
=1.

O

2Technically, a probability space also requires a choice of g-algebra. See ?? if you are
interested in the details.
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Exercise 2.3.1. Finish the proof of Lemma 2.3.4 by showing that Lx
satisfies Definition 2.3.2(b).

In general, when defining random variables, we will always have a “back-
ground” probability space (€2,P) in mind but we will rarely specify it ex-
plicitly. This background probability space ensures a precise meaning to
statements about one or more random variables. For example if X: 2 — R
and Y: € — R are real-valued random variables, and A, B C R , then the
expression P{X € AY € B} means “the probability of the event where
X € Aand Y € B.” The probability measure we are using here is P, so the
event is in the background probability space:

P{XcAYeB}=P{weN: X(w) € Aand Y(w) € B}).

Example 2.3.5. Let Q ={0,1} and P({0}) =P({1}) =1/2. If A=R and
X(w) = 4w, then
P(X =0) =P({w e {0,1} : X(w)
P(X =4) =P({w € {0,1} : X(w)

0}) = P{0} = 1/2
4}) =P{1} = 1/2.

So P{X € S} = 0.51(0 € S)+0.51(4 € S) and hence X is uniformly
distributed on the set {0,4}.

Example 2.3.6. Let X denote the distance I will bike tomorrow. Let p be
the probability I do not bike. If I do bike, assume the distribution of how far
I bike has density f. Then we can define the distribution of X to satisfy

P{XecA}=p1(0€A)+(1 —p)/ f(z)dz.
A
Example 2.3.7. Let Q = [0,1], and P(S) = [y dx, the uniform distribution

on [0, 1], which we denote by Unif[0,1]. If A=R and X (w) = 1(w < p) (for
some p € [0,1]), then

P(X =1)=P({w € [0,1] : X(w)=1})
=P{wel01]: L{w<p)=1})
=P{we[0,1] : w<p})
=P([0,p]) = p,

and similarly P(X =0)=1—p. SoP(X € S) =(1—-p)1(0 € S)+pl(1 € 5)
and hence X ~ Bern(p), a Bernoulli random variable.
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Example 2.3.8. Again consider the probability space ([0,1],P), where P =
Unif[0,1]. In the previous example we defined a single Bernoulli random
variable. But we can define an uncountable family of Bernoulli random
variables X,: Q — {0,1} for each p € [0,1] given by X,(w) = L(w < p).
Notice that forp < q, X, =1 = X, =1 since

Xpw)=1 <<= w<p
= w<q
—= X,(w)=1.

Example 2.3.9. We continue using the probability space ([0,1],P), where
P = Unif[0,1]. We can also construct two random variables X,Y ~
Bern(1/2) such that P{X = Y} = 0. To do, let X(w) = 1(w < 1/2)
given by Y(w) = 1(w > 1/2). By definition, the probability they are equal is

P{X =Y} =P{weQ: X(w)=Yw))}.

If X(w) =Y (w) =1 then we must have w < 1/2 and w > 1/2, which is not
possible. If X(w) = Y (w) = 0 then we must have w > 1/2 and w < 1/2,
which again is not possible. Hence, {w € Q : X(w) = Y(w)} = 0, so
P{X =Y} = P(0) = 0.

Exercise 2.3.2 (Identically distributed random variables that are never
equal). Using the probability space ([0, 1],[P), where P = Unif[0, 1], de-
fine identically distributed random variables X1, ..., Xy taking values in
{1,...,k} such that

(i) Lx, is uniform on {1,...,k} (that is, P(X; = {) = 1/k for all
te{l,...,k}) and

(i1) P(X; = X;) =0 forall i # j.

Example 2.3.10. The Dirac measure at x, denoted 0., is given by
0:(S) =1(z € S). In other words, if X ~ 0, then P{X =z} = 1. Using
Dirac measures, we can write the Bernoulli distribution from the previous
example as (1 — p)dy + po1.
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Exercise 2.3.3 (Binomial probability measure). Similarly to Exam-
ple 2.53.10, write the probability measure of a binomial random variable
X ~ Binom(n,p).

Example 2.3.11 (Inversion). Consider the probability space ([0,1],P), where
P = Unif][0,1]. Say we wish to define a random wvariable taking values
in R with cumulative distribution function c.d.f. F (that is, where
F(r) = P{X < x}). Define the inverse c.d.f. function F~1(p) := inf{z :
F(z) > p}. If we define the random variable X: [0,1] = R to be X = F1,
then

Lx((=00,2]) = P{X € (—o0, 2]}
=PH{w€0,1] : X(w) € (—o0,2]})
=P{w € [0,1] : X(w) < z})
B e [0,1) s F'(w) < o})
=P({w € [0, F(z)]})
= F(z).

So, X does in fact have c.d.f. F.

Exercise 2.3.4 (A triangular random variable). Working with the prob-
ability space ([0,1],P), where P = Unif|0, 1], use the approach from
Ezample 2.5.11 to define a random variable taking values in [—1, 1] with

p.d.f. f(z)=1—|z|.

Exercise 2.3.5 (A geometric random variable). Working with the prob-
ability space ([0,1],P), where P = Unif[0, 1], use the approach from
Example 2.3.11 to define a geometric random variable taking values in
N with p.m.f. p(x) = q(1 — q)*, where ¢ € (0,1).

2.4 Expectation and Integration

The expectation of a discrete random variable is defined in Eq. (2.2) using
its p.m.f. by summing over all possible values of the random variable. The
expectation of a continuous random variable is defined in Eq. (2.3) using
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its p.d.f. by integrating over all possible values. The use of summation in
one and integration in the other might suggest an irreconcilable difference.
But an integral is really a “continuous sum.” Indeed, the symbol [ is meant
to resemble an elongated “S” and the so-called Riemann integral from
introductory calculus is defined as the limit of a sum over increasingly small
regions of the space.

Now, however, rather than a p.m.f. or p.d.f., we are using a probability
measure to describe the distribution of a random variable. So the discrete
and continuous approaches to defining the expectation no longer apply. Thus,
we require a new approach to defining expectations that unifies the discrete
and continuous approaches. To motivate this new definition, notice that for
either a discrete or continuous random variable X defined on a set A, for
any A € P(A),

(2.4) E{1(X € A)} =P{X € A}
(Check this for yourself!) Any reasonable definition of the expectation would

seem to require this identity to hold, so we will require our new, more general
definition of expectation to satisfy Eq. (2.4) as well.

If X ~ p, then by definition P{X € A} = u(A). So, we can rewrite Eq. (2.4)
as requiring that

(2.5) E{1(X € A)} = pu(A).

But just as in the discrete and continuous cases, we want to be able to write
expectations as some sort of integral (or sum) that doesn’t reference the
random variable itself — just the object that determines its distribution. In
the discrete case the object was the p.m.f., in the continuous case the object
was the p.d.f., and in this more general case the objective is the probability
measure. So, we will choose to define our new integral to satisfy Eq. (2.5):

(2.6) E{1(X € A)} := /11(:,; e A)u(dz) = u(A).

We also require our new integral to have the usual properties of integrals and
sums: for any constant a € R and any (reasonable) functions ¢,1: A — R,

(2.7) / 0 (@)p(dz) = a / b(x)u(dz)
and

(2.8) / (6(2) + ()] u(dz) = / o)) + / (e)p(dz).
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The integral with these properties is called the Lebesgue integral. Now
generalizing Eq. (2.6), we will define the expectation of a random variable in
terms of the Lebesgue integral:

E{6(X)} = / o(z)u(dz).

We can also rewrite the expectation as an integral with respect to P.

Proposition 2.4.1. Given a probability space (2, P) and random variable
X:Q— A,

E(X) = / X (w)P(dw).

One heuristic way to interpret this result is that if W ~ P, then E{X (W)} =
[ X (w)P(dw) = [zLx(dz) = E(X).

Example 2.4.2. The Lebesgue integral with respect to the Dirac measure d,
corresponds to evaluating the integrand at x:

[ w)6an) = o).
Example 2.4.3. If X is a continuous random variable with p.d.f. f. Then

its distribution is g given by pp(A) = [1(xz € A)f(x)dz and the Lebesgue
integral of ¢ with respect to s is equal to the Riemann integral of ¢ f:

B(0(0)} = [ olaln(do) = [ o) (o),

Exercise 2.4.1. Use the properties of the Lebesque integral to show
that for a real-value random variable X with finite second moment and
m = E(X),

Var(X) = E{(X — m)?} = E(X?) — m*.

In addition to the more familiar integral notation, we will frequently use the
more succinct notation

(2.9) u(@) = [ wn(as).
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Which of these three notations we use will depend on context. For example,
if a random variable X has already been defined, the expectation notation
E{¢(X)} can be convenient. But if we are discussing a distribution without
reference to a particular random variable, then one of the integral notations
that are used in Eq. (2.9) might be more convenient since they avoid the
need to introduce addition symbols (namely, a random variable with the
distribution of interest).

Exercise 2.4.2. Rewrite Eqs. (2.7) and (2.8) using the notation defined
in Eq. (2.9).

2.4.1 Properties of the Lebesgue Integral

Lebesgue integrals (and hence expectations) essentially have all the same
standard properties as the continuous and discrete versions (which, as we
detail later, are special cases). First, note that given a constant a > 0 and
probability measures p, v defined on A, we can define new measures au
and p + v since we are just manipulating functions: for A € P(A),

(ai)(A) := ap(A)
(14 v)(4) = p(4) + v(A).

We call these measures rather than probability measures because their total
mass is no longer 1. For example, (¢ + v)(A) = u(A) +v(A) =1+1=2.
But they do satisfy condition (b) from Definition 2.3.2. It turns out that
condition (b) is the only one required to define the Lebesgue integral of a
measure. In particular we have

[ oty = [aswntan) =a [ o)
/¢(y)(u+V)(dy) = /¢(y)u(dy)+/¢(y)V(dy)-

Or, using our more succinct notation,

Example 2.4.4. We can now check that the Lebesgue integral definition
of expectation reduces to the old definition for discrete random wvariables.
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For a discrete random variable X with p.m.f. f: V — [0,1], the equivalent
probability measure is 1 = Y oy f(x)d,. First, we can check this definition
of u is consistent with Eq. (2.1):

Pr{X € A} = p(A) = D f(2)0.(A) =) f@lxe )= Y [(x)
zeV zeV zeVNA

More generally, we can check that the Lebesgue integral definition of the
expectation is consistent with Eq. (2.2):

B(6(0)} = [ oly)n(dy) = L/¢ b:f ]

zcV
= oy J(dy) f(x) [ &y
=3 [ s = 356 fotns
=Y f(z)é(x)
zeV

Example 2.4.5. Let X be the random wvariable of biking distance from
Ezample 2.3.6. Then, using the py notation from Example 2.4.3, = Lx =

pdo+ (L —p)pys, so
mwx»—/wmmm

:p/a@%@m+um/wwwm@
— po(0) + (1 p /¢

Exercise 2.4.3. Let a,b,c,d € R be constants, let p and v be measures
on the space A, and let ¢ : A — R and ¢ : A — R be real-valued
functions.

(a) We can expand an expression such as (ap)(bp + 1) to the equiv-
alent form abu(¢p) + au(v). Provide a similar expansion for the
expression (ap + bv)(co — dip).

(b) The equivalent of the expression (ap)(bp+1)) in integral notation is
[{bo(x)+v(z)}(ap)(dz). Rewrite the expression (ap+bv)(ch—di)
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and the expansion you provided in part (a) in integral notation.

Exercise 2.4.4. Given a probability space (Q,P), suppose X : Q@ — Ry
is a nonnegative random variable with E(X) = 1. For each S € P(Q),
define the random variable Yg : Q — Ry given by Yg(w) = X (w)l(w €
S). Define Q : P(Q) — Ry by Q(S) := E{Ys}.

(a) Show that (Q,Q) is a probability space.

(b) Give an example showing that Q(S) = 0 does not necessarily imply
that P(S) = 0.

Another intuitive and useful property of the Lebesgue integral is mono-
tonicity: If ¢(x) < ¢(z) for all x € A, then for any probability measure p,
the same inequality hold for the integrals of the functions with respect to pu:

(@) < p().

Exercise 2.4.5. Use monotonicity to show that for any random variable
X and real-valued function ¢, |E{¢(X)}| < E{|¢(X)|}.

2.4.2 Multiple integrals

As in multivariate calculus, we can define multiple integrals, which turn out
to be just regular Lebesgue integrals in disguise. For sets A and B, define
the Cartesian product A x B := {(x,y) : x € A,y € B}. So, for example,
R x R = R2. Given probability spaces (u,.4) and (v,B), for a function
¢: Ax B — R, we can write the multiple integrals

/{/¢(x’y)“(dx)}”(dy) and /{/¢(w,y)V(dy)}u(dx)

since the integrals in brackets are function of, respectively, ¥ and x; hence
the outer integrals are well-defined. In undergraduate multivariate calculus
these two integrals are usually equal to each other, and the same is true
for Lebesgue integrals. All we require is that one of the above integrals is
finite when we replace ¢(z,y) with its absolute value. To make this result a
little more precise, and to relate the multiple integrals to a “single” Lebesgue
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integral, define the product probability measure (u@v): P(AxB) — [0,1]
such that for A € P(A) and B € P(B),

(1 ® V)(A x B) = p(A)u(B).

Since p ® v is a probability measure, the integral [ ¢(z,y)(p @ v)(dz,dy) is
well-defined. We can now state the following key result.

Theorem 2.4.6 (Fubini-Tonelli). Given the definitions above,

[ st enaan = [{ [ owputan fria

~ [{ ] st mwia futan

if either (a) ¢ is non-negative or (b) any of the three integrals is finite when
@(z,y) is replaced by its absolute value (e.g., if [|d(z,y)|(p @ v)(dz,dy) <
00).

2.5 Conditional Probabilities and Expectations

The last piece of introductory probability we need to generalize are the
definitions of conditional probabilities and conditional expectations. We
start by recalling what it means for two events to be independent of each
other.

Definition 2.5.1. Given a probability space (Q,P), the events S, S’ € P(Q)
are independent if P(SNS") =P(S)P(S").

The reasoning for this definition becomes more clear when we define the
conditional probability of S occurring given that S’ occurs.

Definition 2.5.2. For events S, 5" € P(Q) with P(S") > 0, the conditional
probability of S given S’ is defined as P(S | S') :=P(SNS")/P(S").

Hence, if S and S’ are independent, the conditional probability of S given
S’ is equal to the probability of S:

P(S | §') = P(S NS /P(S) = P(S)P(S")/B(S') = P(S).
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Exercise 2.5.1 (Conditional decomposition). Show that for any S, S" €
P(Q2) with P(S") € (0,1), P(S) =P(S | S))P(S") + P(S | S™)P(S5).

We can also define the notions of independence and conditioning for two or
more random variables defined on the same probability space. We focus on
the case of two random variables.

Definition 2.5.3. The random variables X: Q@ — A and Y: Q — B are
independent if for any A € P(A) and B € P(B), the events {X € A} and
{Y € B} are independent; that is,

P{X € A)Y € B} =P{X € A}P{Y € B}.
The following result enables us to the define conditional distributions and
conditional expectations of random variables.

Theorem 2.5.4. Under regularity conditions, for any pair of random vari-
ables X: Q@ — A and Y: Q — B, there exists a function Pxy: B x P(A) —
[0, 1] which has the property that for all x € A, the function Px|y(z,-): A
Pxy (w, A) is a probability measure and

P{X € A,Y € B} = E{1(Y € B)Pyy (Y, A)}.

Definition 2.5.5 (Conditional probability). For random variables X : Q —
A and Y : QQ — B, the conditional probability of X € A given Y is the
random variable on (Q,P) given by

P{X € A|Y}: ws Py (Y(w), A).

while the conditional probability of X given Y = y is the probability
measure

The following result shows that the expected value of a conditional probability
of the event {X € S} is equal to the (unconditional) probability of that
event.

Proposition 2.5.6. For any A € P(A),

E[P{X € A|Y}] = P{X € A}.
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Proof. Tt follows from Theorem 2.5.4 with S’ = B that

E[P{X € S[Y}] = E{Px)y(Y,5)}
=E{1(Y € B)Px|y(Y,S)}
=P{X €S5Y € B}
=P{X € S}.

O]

Given random variables X: Q — A, X’': Q — A, we have the useful identity
that

PIXeAX eA}=P{we: XeA X cA})
=P{weQ: X e A})
=P{X € A}.
The same result holds for conditional probabilities.

Proposition 2.5.7. Given random variables X: Q — A, X': Q — A, and
Y:Q— B, forally € B and A € P(A), we have

Px |y (y, A) = Px x1y (y, A x A").

Hence P{X € A|Y}=P{X e A X €A |Y}.

Proof. We won’t provide a rigorous proof, but the result essential follows
from the fact that for all B € P(B),

E{1(Y € B)Pxy(Y,A)} =P{X € A,Y € B}
=P{XecA X c¢A,Y € B}
=E{1(Y € B)Pxy(Y,A x A)}.
O

Example 2.5.8. Consider random variables (X,Y) with a multivariate
Gaussian joint distribution N'(u, X), where m € R? and V € R?*2. Letting
m(y) 1= m1 + v12055 (y — ma) and v 1= v11 — Vv, we have

Pxy (y,) = N(m(y),v).
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Since Pxy(y,-) is the probability measure for a continuous distribution, it
has a p.d.f. p(y,-) given by

1 _{z—m@)}?
e 2v .

7'%' —
p(y, ) 5

We can use this fact to conclude that
P{X € 5|Y(w)} = Pxjy(Y(w),5)
— [ e 8)Pay (Y (). o)

= /]l(ac € S)p(Y(w), z)dx,

where each expression is a random variable when considered as a function of
w. For example, if S = [a,b] for a < b, then we have

b
P{a§X§b|Y(w)}:/ \/21?}6

_ {z—m(Y(w))}?
2v

dzx.

Exercise 2.5.2. Given a probability space (2, P) and real-value random
variables X and Y with finite second moments, show that if m := E(X)
and m :=E(Y), then

Cov(X,Y) :=E{(X —m)(Y —m)} = E(XY) —mm

We can also use Theorem 2.5.4 to define two versions of the conditional
expectation: one in which Y is unknown (and hence the conditional expecta-
tion is a random variable) and one in which Y takes on a fixed value (and
hence the conditional expectation is real-valued).

Definition 2.5.9. For random variables X: Q — A andY: Q — B, and a
function ¢: A x B — R, the conditional expectation of ¢(X,Y) given
Y is the random variable on (2, P) given by

E{6(X,Y) |V} w s / oY () Py (Y (w), dx)

while the conditional expectation of ¢(X,Y) given Y = y is the real
value

E{6(X,Y)|Y =y} = / o(x,y) Px)y (4, da).
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Conditional expectations satisfy the so-called tower property: the ex-
pected valued of the conditional expectation is equal to the (unconditional)
expectation.

Proposition 2.5.10. The conditional expectation satisfies
EE{¢(X,Y) | Y}] = E{o(X,Y)}

and, letting v = Ly,
JEOEY) Y = yhuldy) = B(6(X. 1)),

The tower property also holds for multiple conditional integrals

Proposition 2.5.11. For random variables X, X',Y,
E[E{¢(X,X"Y)| X", Y} |Y] =E{¢(X, X" Y) | Y}.

2.6 Limit Theorems

Often we are faced with a sequence of random variables Y7,Ys,... and we
would like to know if their limiting behavior is somehow predictable.

Example 2.6.1. Consider a sequence of i.i.d. random variables X1, Xo, . ..
in RP with mean m. We would like to know if the sequence of sample
averages X, = k™1 25:1 X converges to m. Such a result is called a law
of large numbers (LLN).

Example 2.6.2. Consider a sequence of i.i.d. random variables X1, Xo, . ..
in RP with mean m and covariance . We would like to know if the
distribution of the centered and rescaled sample average Xy, := k'/?(X ), —m)
will converge. Such a result is called a central limit theorem (CLT).

To obtain a law of large numbers or a central limit theorem, we need to
define what it means to “converge.” There are many possibilities. We start
by considering what it means for the distributions of random variables to
converge:

Definition 2.6.3 (Weak convergence). A sequence of probability measures
v, Vs, ..., converges weakly to the probability measure v, if, for all
bounded, continuous functions ¢, limg_,o0 V(@) = Voo(®). We then write
Vg ﬂ) Voo -
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Remark 2.6.4. The definition of weak convergence is very general. Since
it only requires the notion of a continuous function on A to be well-defined
(that is, for A to have a topology), it is applicable even if A is not a subset
of RP.

We can use weak convergence to define what it means for a sequence of
random variables to converge even if they are not defined on the same
probability space.

Definition 2.6.5 (Convergence in distribution). A sequence of random
variables X1, Xo,... is said to converge in distribution to the random

variable X, if Lx, it Lx_ . We then write X} 4 Xoo-

In other words, X, L\ X if for all bounded, continuous functions ¢, we
have limy_,00 E{&(Xk)} = E{d(X)}. As suggested by the name, weak
convergence (and hence convergence in distribution) serves as a minimal
criteria for considering a sequence of random variables to be convergent. We
can now state the classical version of the central limit theorem.

Theorem 2.6.6 (Central limit theorem for i.i.d. random variables). For
any sequence of i.i.d. random variables X1, Xo, ... in RP with mean m and
covariance X3,

12X, —-m) S Y,
where Y ~ N (0,X).
If the random variables are defined on the same probability space, there

are a few additional notions of convergence which are used for laws of large
numbers.

Definition 2.6.7 (Convergence in probability). A sequence of random vari-
ables X1, Xo,... on RP is said to converge in probability to the random
variable X oo if for all € > 0,

lim P{|| X; — Xooll2 > e} =0.
k—o00

We then write X, 5 X

Remark 2.6.8. If X, is a constant, then convergence in probability is
well-defined even if the random variables are defined on different probability
spaces.
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Definition 2.6.9 (Almost sure convergence). A sequence of random vari-
ables X1, X, ... is said to converge almost surely (or, converge with
probability 1) to the random variable X if

]P’{ lim X = Xoo} =1.

k—o0

We then write Xi, “3 Xoo.

Remark 2.6.10. Recall that P{limy_,oo X; = X} is a shorthand for the
more verbose expression

]P’({w €Q: lim Xp(w) = Xoo(w)}>.

More generally, saying a statement holds almost surely (a.s.) means the
event under which the statement holds has probability 1. So, another way of
writing “X;, “3 X o7 is “limg_e0 X = Xoo a.8.” We can now state the law
of large numbers.

Theorem 2.6.11 (Strong law of large numbers). For any sequence of i.i.d.
random variables X1, Xo, ... in RP and m € RP,

Y}C a;s>. m.
if and only if E(X1) = m.

Example 2.6.12. The Cauchy distribution with location parameter y
and scale parameter v has p.d.f.

sa-{ol =)

and is denoted Cauchy(y,~). The mean of a Cauchy distribution is undefined
and so the law of large numbers does not apply. In fact, if X1, Xo,... are
i.i.d. Cauchy(y,~), then X ~ Cauchy(y,~).

We can relate the three types of convergence as follows:

Proposition 2.6.13. For a sequence of random variables X1, Xo, ..., the
following hold:

(i) If X 5 Xoo, then Xy B Xoo.
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(i) If X B Xoo, then Xj 2 Xoo.

(iii) If X L for a constant c, then Xy, L X

Example 2.6.14. If follows from Theorem 2.6.11 and Proposition 2.6.13 that
for any sequence of i.i.d. random variables X1, Xo,... in RP, if EX; = m,
then

This result is known as the weak law of large numbers, since convergence
in probability is a weaker guarantee than convergence almost surely, in the
sense that almost sure convergence tmplies convergence in probability.

In addition, applying a continuous function to each random variable preserves
all three types of convergence:

Proposition 2.6.15 (Continuous mapping). For a sequence of random
variables X1, Xo, ... and continuous function ¢, the following hold:

(i) If X % Xoo, then ¢(Xi) 5 ¢(Xoo)
5 ¢(Xoo

)
(i) If Xp, 3 Xoo, then ¢(X1) 3 0(Xoo).

(ii) If X 5 Xoo, then ¢(Xy) 5

2.7 Stochastic Processes

The idea of a stochastic process is easy to state.

Definition 2.7.1 (Stochastic process). A stochastic process is a collection
of random variables X = {X;}ier [defined on a probability space (2,P)],
where each X; takes values in a set A, which is called the state space. The
set T is called the index set.

Here are a few examples of stochastic processes, many of which you have
probably encountered before.

Example 2.7.2 (Random variable). Any random variable is a (rather un-
exciting) stochastic process. Just take T to be any singleton set such as

{0}
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Figure 2.1: Examples of some sample paths from the random walk defined
in Example 2.7.4.

Example 2.7.3 (Random vector). Let T = {1,...,D} and A =R. Then
X is a random vector in RP. For example, for any p € RP and any
positive-definite matriz ¥ € RP*P et X ~ N (1, X) be a Gaussian random
vector.

Example 2.7.4 (Random sequences and random walks). Let T = N :=
{0,1,2,...} and A = RP. Then X is a random sequence. For example, let
d=1 and Zj %IN'(O, 1). Then Xj, = Z’g:l Zy defines a random walk on R.
Note that Z = (Z)ren 1s also a stochastic process.

Example 2.7.5 (Continuous-time processes). Stochastic processes case also
take values in continuous (uncountable) index sets such as T = R4 = [0, 00),
the positive reals. We will encounter important examples of these in 77.

Rather than X, sometimes we will write X (¢). This alternative notation
emphasizes the perspective of X as a random function from T to A. That is,
we can think of a stochastic process as an A-valued function X (¢,w), where
w € Q. If we take t as fixed, then X; = X (¢, ) is a familiar random variable
again. However, if w is fixed, then X (w) = X (-,w) is a function from T to
A, which is often called a sample path.

Example 2.7.6 (Sample paths of a random walk). Figure 2.1 shows example
sample paths of the random walk defined in Example 2.7.4.
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Chapter 3

Markov Chains

A Markov chain is a random sequence with the property that, given its
current state, the future is independent of the past. This is formalized
as the Markov property. Construction of Markov chains using an initial
distribution and transition probability kernels is discussed. Stationary
distributions are introduced and their possible non-uniqueness is ex-
plored. As an application, the stochastic gradient descent algorithm for
optimization s introduced in detail.

Both stochastic gradient descent and Markov chain Monte Carlo involve
iteratively generating a state xj, where the distribution of x; depends only
on the previous state x;_1. Thus, the iterates form a type of stochastic
process called a Markov chain. This chapter is dedicated to formally
defining Markov chains and describing some basic properties.

3.1 What is a Markov Chain?

Consider a discrete-time stochastic process X = {Xj}ren on state space
A. In applications we will usually assume that A = RP. But the following
discussions will mostly not depend on that assumption.

Definition 3.1.1 (Markov chain). The process X is a Markov chain
if it satisfies the Markov condition: for all k € N, all A C A,and all
xgy,..., T €A,

(3.1) P{Xk+1 cA ‘ Xo=xq,..., X = mk} = P{Xk—H cA | X = a:k}

In other words, a Markov chain satisfies the property that if you know
its state at some time k, its future states (after k) are independent of the

51
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past (before k). In fact, the Markov condition is equivalent to two other
conditions:

forall k € N, all AC A, all zg,x1,... € A, and all
(3.2)0§k‘1<--'<k1’§k‘,
P{Xk—i-l €A | Xk1 = inl,...,in = :ckl} :P{Xk-t,-l A | in = ar;kz}

and

for all k,m € N, all A C A, and all g, x1,... € A,

(3.3)
]P’{Xker €A ‘ Xo=xg,..., X = a:k} = P{Xk+m cA ‘ X = :Ek}

Exercise 3.1.1 (The Markov condition). Show that (a) Eq. (3.2) =
Eq. (3.3) and (b) Eq. (3.3) = Eq. (3.1).

The Markov condition implies that the evolution of a Markov chain can be
fully described by the transition probabilities

P{Xk+1 cA ‘ X = a:k}

In general these transition probabilities depend on k. However, often there
is no such dependence.

Definition 3.1.2 (Homogeneity). A Markov chain X is homogenous if
for all AC A and x € A, its transition probabilities satisfy

P{Xk-i-l €A|Xk:$}:P{X1 €A|X0:m}.
Otherwise the chain is called inhomogenous.

Example 3.1.3 (A random sequence). Any sequence of independent random
variables X is a Markov chain since then each random variable is independent
of previous ones: P{Xyy1 € - | X = xp,...,Xo = o} = Lx,,,- The
sequence is homogenous if the random variables are identically distributed.
For example, if X}, ~ N (k,1) independent for each k € N, then the chain
is inhomogenous. On the other hand, if for constants m and v we have
X ~ N(m,v) independent for each k € N, then the chain is homogenous.

Example 3.1.4 (A random walk). The random walk X from Example 2.7.}
is a homogenous Markov process with P{ X1 € - | Xy, = x} = N(x,1); for,
equivalently, we can write this conditional distribution as

Xk+1 ’ Xk =X NN((IZ,I)
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Example 3.1.5 (AR(1) process). Taking A = RP, the first-order autore-
gressive [AR(1)] process is given by

Xy = aXp-1+ e,

where € = (€ )keN 18 an i.i.d. sequence of random variables satisfying E(gg) =
0 and Cov(eg) = X.. Letting A—y:={x —y | x € A}, we can see it is a
homogenous Markov process with

P{Xk €A | Xp_ 1= :U} = P{Osz_l +ep € A | Xp_1= $}
:]P’{ek EA—Ozm}.

For example, if e ~ N(0,X.), then

X | Xp1 =2 ~ N(az, X,).

3.2 Probability Kernels

Recall from Section 2.5 that, following Definition 2.5.5, the conditional
distribution P{X} € A | X,-1 = «} is defined in terms of the function
Px,x,_,: Ax P(A) — [0,1]. It follows from Theorem 2.5.4 that keeping
x € A fixed, Px,|x, ,(x,-) is a probability measure. In the context of
Markov chains, we will find it much more convenient to work with Px, |x, |,
which we call a probability kernel:

Definition 3.2.1 (Probability kernel). A probability kernel (also called a
Markov kernel) is a function P: A x P(A) — [0, 1] which has the property
that, for all x € A, the function P(x,-): A — P(x,A) is a probability
measure.

Given a Markov chain, we can define the kth transition kernel Pj given
by

Pk(iL',A) e PXk|Xk,1(1’aA) = P(Xk cA | Xp_1= SL‘)

The distribution of the Markov chain is fully described by the initial distri-
bution vy := Lx, and the transition kernels (Pg)p>1.

Example 3.2.2 (Finite-state Markov chains). Introductory stochastic pro-
cesses courses (and some probability theory courses) cover discrete-state
Markov chains, where A C Z. For concreteness, consider the case of
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A=[D]=A{1,...,D}. We can write the distribution of the Markov chain at
index k as a vector m, € [0,1]7, where

Tk,d ‘= Pr{Xk = d}

Note that the sum of the components of m must be 1:

> ma= Y Pr{Xy=d} =Pr{X, € [D]} =1

de[D] de[D]

since A= [D]. We can also express distribution of Xy, using my:

Lx, = Y Thdba.
de[D]

We can summarize the transition kernel Py using a transition matrix
K, € [0,1)P*P  where

Kiraag =P{X) =d | Xp—1 = d} = Pp(d, {d'}).

FEach row of the transition matriz must sum to 1 by the properties of the
transition kernel and probability measures:

> Kpaaw = Y Peld{d}) = Pu(d,[D]) = 1.
] d'e[D]

d'elD

We can also express the transition kernel in terms of the transition matriz:

Py(d,-) = Z Ky qa0a0.
d’'€[D]

Exercise 3.2.1 (SGD transition kernel). Give the transition kernel for
the SGD update from Eq. (1.4) when (a) B=1, (b) B=2, and (c) B
18 any positive integer.

3.2.1 Conditional distributions

We would like to be able to write arbitrary conditional distributions of the
form P{X} € A | Xy = «} for 0 < ¢ < k. Before writing out the general
case, we build some intuitions by considering a finite-state Markov chain.
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Example 3.2.3 (Conditional distributions of a finite-state Markov chain).
Following the set-up and notation from Example 3.2.2, to find the two-step
conditional distribution of Xo given Xg, we can multiply the corresponding
matrices together: letting

Ky2 = K1 K>,
we have

KO‘)Q,dO,dQ

= Z K14y,d, K244, definition of matriz multiplication
d1€[D]

= ) P{X1=di| Xo=do}P{Xa =dy | X1 =di} definitions of K\ and K,
di1€[D]

= Z P{X1=di | Xo=do}P{X2 =do | X1 =di,Xo=do} Markov assumption
dlé[D}

= Z P{Xs =dz, X1 =d1 | Xo =do}
d1€[D]

=P{Xy=dz | Xo =do}

In other words, we can find the conditional distribution of Xo given Xg by
multiplying the transition matrices for times 0 to 1 and 1 to 2 together. Using
the same idea, we have the more general relationship that if

Ky, = Kep1 Koo Ky,
then

Kospaa =P{Xp=d | X;=dg}.

In the general case, the conditional distribution P(X3 € A | Xy = x) takes
similar form, which integration replacing matrix multiplication (we omit the
derivation):

/P2(CU1’A2)P1(5307d331) = Px,|x, (%0, A2).

We call the right-hand side the composition of the 1st and 2nd transition
kernels.



CHAPTER 3. MARKOV CHAINS 56

Definition 3.2.4 (Composition of probability kernels). Given kernels P
and P’, the kernel composition PP’ is the probability kernel such that for
xeAand AC A,

(PP")(x, A) ::/P'(y,A)P(m,dy).
Lemma 3.2.5. The composition PP’ is a probability kernel.

Proof. Taking x € A as fixed, we check the requirements of Definition 2.3.2
are satisfied by PP'(x,-). For pairwise disjoint sets A1, Ag,--- C A,

(PP')(x,U;>14;) = /P'(y, U;>14;)P(x,dy) by definition of PP’

oo
= /Z P'(y, A;))P(x,dy) because P’ is a probability kernel

/
= E / Py, A x,dy) by monotone convergence theorem

= Z (PP')(x,A;) by definition of PP,

Furthermore,
(PP)(x / P(z,dy)
/ dy) because P’ is a probability kernel
=1 because P is a probability kernel.

We can use composition repeatedly. For example, ((P1FP2)Ps)(x,A) =
Pr(Xs € A | Xy = x). However, the notation is again getting clumsy
due to all the parentheses. Luckily, composition is associative, so we can
write Py PyPs(x, A) or even Py P,P3P3(x, A) without any ambiguity.

Lemma 3.2.6 (Associativity of kernel compositions). For any probability
kernels Py, Pa, and Ps, the equality (PyPy) Py = Py (PyP3) holds.



CHAPTER 3. MARKOV CHAINS 57

Proof. Using the definition of composition repeatedly and using Fubini’s
theorem, for any & € A and A C A, we have

(PLP2)P3)(z, A) = | P3(y, A)(P1P2)(z,dy)

Ps(y,A)/Pz(y’,dy)Pl(w,dy’)

Pl(-’v,dy’)/Ps(y,A)Pz(y’,dy)

Pl(w7 dy/)(P2P3)(y/7 A)

—— — —

= (P(PP3))(z, A).

O

We have now shown that kernel composition behaves very similarly to matrix
multiplication. In fact, as hinted at above, we can view our results about
kernel compositions as generalizing our derivations in Example 3.2.3 for
finite state spaces using matrix operations. Returning to our original goal
on writing arbitrary conditional distributions, we can now conclude that

PI‘{Xk € A | Xy = :I:g} = Pg+1pg+2 s Pkflpk(.’llg, Ak).

For a homogenous Markov chain, since P, = P; for all £ > 1, rather than
writing the composition of P := P; multiple times as PP, PPP, etc., we can
instead take inspiration from matrix multiplication and recursively define
the compact notation P := P!~ P with the base case P! := P.

3.2.2 Marginal distributions
We would also like to be able to compute the marginal distributions vy, := Lx,
of the Markov chain iterates. Again starting with the simplest case, if

the marginal distribution v is known, then using definitions and Proposi-
tion 2.5.6, we have

1/1(A) = Pr{X1 S A} = E[PI‘{Xl cA ’ Xo}] = /Pl(wo,A)l/(](dwo).

We refer to integral as as the composition of vy and P;.
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Definition 3.2.7 (Composition of a distribution and probability kernel).
Given probability measure p and probability kernel P, the distribution—
kernel composition uP is the measure such that for A C A,

(WP)(A) == / Py, A)u(dy).

Lemma 3.2.8. The composition uP is a probability measure.

Exercise 3.2.2. Prove Lemma 3.2.8.

We can combine a distribution—kernel composition with kernel compositions
to obtain arbitrary marginals. For example, Lx, = (v9P;)P. Or, more
generally, Lx, b2 = (Vi Pry1)Prio. Since, as stated in the next lemma, the
two compositions are associative, we can drop the parentheses and write
Lx,,, = VikPgi1Pg2 without any ambiguity.

Lemma 3.2.9 (Associativity of distribution and kernel compositions). Show
that (/,LPl)PQ = IU,(P1P2)

Exercise 3.2.3. Prove Lemma 3.2.9.

Exercise 3.2.4. For a homogenous Markov chain with transition kernel
P, for k> ¢ >0, use compositions to write vy in terms of P and vy.

3.2.3 Expectations

The final operation we would like to be able to do using kernels is compute
expectations. By definition,

(3.4) E{¢(X1) | Xo = zo} = / &(y) Py (o, dy).

We have been using the notation p(¢) to denote E{¢(X)} when X ~ p.
We will use the similar notation Py¢(xg) to denote the right-hand side of
Eq. (3.4).
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Definition 3.2.10 (Expectations with probability kernels). Given a prob-
ability kernel P and function ¢, the conditional kernel expectation P¢
is the function such that for x € A,

(P) () := / o(y) P, dy).

When combined with compositions there is no ambiguity if we do not write
parentheses. So, for example, for ¢ : A — R,

(3.5) voP1Pap = vo P P2(¢)
= 1y(P1 o)

— /E{¢(X2) | Xo = xo}ro(deo)

= E[E{¢(X2) | X0 = z0}]
=E{¢(X2)}

is the expected value of ¢(X3).

Exercise 3.2.5. For a homogenous Markov chain with transition kernel
P and initial distribution vy, write each of the following as a probability,
expectation, or conditional expectation, similarly to Eq. (3.5): (a) voP¥,

(b) Pk¢, and (c) vyP*¢.
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3.3 Stationary Distributions

In stochastic optimization it can be useful to characterize the limiting distri-
bution of the iterates when using constant step size. Or, for Markov chain
Monte Carlo, we want to construct transition kernels that will lead to the
iterates having a desired distribution 7. To answer these types of questions,
it is necessary to determine for which distribution (or distributions) a Markov
chain will remain constant.

Definition 3.3.1 (Invariant / stationary distributions). The probability
measure v is an invariant distribution of the homogenous Markov chain
if v = vP; that is, when the distribution of Xy is v, the distribution of
Xi41 @5 also v. The invariant distribution is also called the stationary
distribution and if the distribution of Xg is v, the Markov chain is said to
be at stationarity.

Example 3.3.2 (Stationary distribution of a finite-state Markov chain). For
a finite-state Markov chain with transition matriz K € [0,1]P*P the invari-
ant distribution condition is w = 7K for w € [0,1]7 satisfying ZdD:1 g = 1.
Thus, the invariant distributions are exactly the left eigenvectors of K with
eigenvalue 1. For example, if K = I (the identity matriz), the probability of
a staying in the same state is always 1. Also, # = wl = wK for all ™, so
every distribution is an tnvariant distribution of a Markov chain with this
transition matriz! On the other hand, if Kg o = 1/D for all d,d € [D], its
only eigenvector with eigenvalue 1 is the constant vector mg = 1/D. Since
etgenvectors are always determined up to a multiplicative constant, we choose
to scale them such that they represent valid probability distributions (i.e., the
sum of the components equals 1).

Example 3.3.3 (AR(1) process, continued). In the setting of Example 3.1.5,
take g ~ N(0,%.). If « = 0 then Xj, ~ N(0,X.). So, assume o # 0. Then
if p =N(m,S) and X' ~ p, it follows that o X' ~ N'(am, a?S) and hence
X ~ uP has distribution N'(am,a? S + X.). By induction, it follows that

k-1
(3.6) pPk = N(akm, a?*s + Z a2€23€> .

£=0

We can find an invariant distribution by setting p = uP, which yields the
requirement that

N(m,S)=N(am,a?S + X.).
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Hence m = am, which implies m = 0 since o # 0, and S = a*S + X,
which implies 8 = (1 — a?)7'%. as long as |a| < 1. Hence, if a € (—=1,1),
the Gaussian AR(1) process has invariant distribution N'(0,{1 — a?}~1%.).

Exercise 3.3.1. Prove Eq. (3.6) using induction.

Exercise 3.3.2. In the setting of Fxample 3.5.3, prove that the dis-
tribution of the AR(1) process converges to the stationary distribution
v = N(0,{1 — a?}7'%,). In particular, show that for all A C RP,
limy,_y00 uP*(A) = v(A). [Hint: Proving convergence in distribution for
Gaussian distributions is equivalent to showing convergence of the mean
and covariance.]

Exercise 3.3.3 (Non-uniqueness of invariant distributions). Show that
any probability distribution v is an invariant distribution of the Markov
chain with transition kernel given by P(x, A) = 0z(A).




Chapter 4

Convex Analysis and Taylor

Approximation
With Applications to Error Analysis of SGD

Introduction to two heavily used tools in the analysis of optimization and
sampling algorithms: convex analysis and bounds on the error of Taylor
series approzimations. Key concepts include (strong) convexity, strong
smoothness, and co-coercivity. Results are given about operations on and
compositions of convex functions, and implications of (strong) convezity
and strong smoothness. As an application, develops error analyses
of stochastic gradient descent with constant step size (last-iterate and
iterate averaging) and decreasing step size (last-iterate).

4.1 Convex Sets and Functions

When analyzing stochastic optimization and sampling algorithms, we must
impose regularity conditions. For stochastic optimization these conditions
concern the function being minimized and the stochastic gradients being used.
For sampling the conditions concern the target distribution. The theory of
convex analysis provides a quite general — and very fruitful — approach
to defining such regularity conditions that hold in real-world problems.
Combined with very classical results on the error of Taylor series function
approximations (Section 4.4), we will see that we can obtain quantitative,
finite-iteration error bounds for stochastic gradient descent (SGD) with and
without iterate averaging.

Our starting point, however, concerns sets rather than functions.
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(a) Three convex sets.

(b) Three non-convex sets.

Figure 4.1: Examples of convex and non-convex sets.

Definition 4.1.1 (Convex sets). A set A C R is convex if for all x,y € A
and t € [0,1], te + (1 — t)y € A.

Figure 4.1 gives examples of sets in R? that are convex and non-convex.

Definition 4.1.2 (Convex and concave functions). Given a conver set
A CRP, a function ¢: A — RU {—o0, +oo} is convex if for all x,y € A
and t € [0,1],

(4.1) o(te + (1 —t)y) < to(x) + (1 —t)o(y).

If in addition if Eq. (4.1) holds without equality (i.e., with a < rather than a
<) when t ¢ {0,1} and x # y, then ¢ is strictly convex. If —¢ is conver,
then we say that ¢ is concave.

The righthand side of Eq. (4.1) represents the line L connecting (x, ¢(x))
to (y,¢(y)). Thus, a function is convex if and only if for each point y on
the line connecting « and y, the function value f(y) is less than or equal to
corresponding value of L at y. This requirement is illustrated in Fig. 4.2,
along with some additional graphical examples of functions that are convex,
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(a) Three convex functions. The third function (a line) is also concave.

| /N /
[ / aaad

(b) Three non-convex functions. The first two functions are concave. The last
function neither concave nor convex.

Figure 4.2: Examples of convex and non-convex functions ¢(x). For the
convex functions, the blue shaded region above the function is a convex
set. For concave functions, the white region below the function is a convex
set. The orange lines show the linear upper bound on the right-hand side
of Eq. (4.1) holds for convex functions but not non-convex functions. The
orange dots denote the points (x,¢(x)) and (y, ¢(y)). The green solid line
illustrates the linear lower bound in Eq. (4.2) (with the green star denoting
the point (y,#(y))). The linear bound holds for all convex functions. The
green dotted line illustrates the quadratic lower bound in Eq. (4.3).

concave, or neither. Notably, the only functions that are concave and convex
are lines.

Exercise 4.1.1. Show that a function ¢ is convex and concave if and
only if p(x) = a'x + b for some a € R and b € R.

Although we will not make use of it going forward, the following result makes
the connection between convex sets and functions explicit, as illustrated in
Fig. 4.2.

Proposition 4.1.3. A function ¢ is convez if and only its epigraph {(x,a) €
AXR :a>¢(x)} is a conver set.

Example 4.1.4 (Convex functions). Functions that are convex on A = R:
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1. The linear function ¢(z) = x
2. The quadratic function ¢(x) = 2
3. The quartic function ¢(x) = z*

4. The exponential function ¢(x) = exp(x)
Functions that are convex on A = [0, 00):

1. The negative logarithm ¢(x) = — log(z)
2. The cubic function ¢(z) = x>

3. The inverse function ¢(z) = ="
Functions that are conver on A =RP:

1. For any vector b € RP | the linear function ¢(x) =b'x

2. For any positive semidefinite matriz A € RP*P | the quadratic form
T
x' Azx.

3. For any p > 1, the p-norm function ¢(x) = ||z||,.

Since we will deal exclusively with differentiable functions, it will often be
useful to leverage an equivalent characterization of convexity. For vectors
a,b ¢ RP, we will sometimes use the inner product notation (a,b) :=
a'b=a- b to denote the dot product.

Proposition 4.1.5. A differentiable function ¢: A — R is convex if and
only for all x,y € A,

(4.2) o(x) > o(y) + (¢'(y), x — y).

The right-hand side of Eq. (4.2) can be viewed as the linear approximation to
¢(x) using the first-order Taylor series at y, as illustrated in Fig. 4.2. Thus,
we have the useful analytical fact that the linear approximation of a convex
function provides a lower bound on the function’s value.
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Exercise 4.1.2 (Checking that functions are convex). Verify using any
of the equivalent definitions that the functions listed in Fxample 4.1.4
are convexz.

A more stringent requirement than convexity is that of strong convexity,
which guarantees a quadratic lower bound.

Definition 4.1.6 (Strong convexity). For u > 0, a function ¢: A — R is
p-strongly convex if any of the following equivalent conditions holds:

1. Forallxz,y € A and t € [0,1],

oltw + (1 - t)y) < t9(@) + (1 = )é(y) — 51— )]l — y]3

2. For differentiable ¢, for all x,y € A,
(4.3) 6(@) = 6(y) + (¢ (), @ —y) + Slle -yl

3. For twice differentiable ¢, for all x € A,

V2 f (@) = pl.

The first definition is reminiscent of Definition 4.1.2. The second definition
strengthens Eq. (4.2) to a quadratic lower bound, as illustrated in Fig. 4.2.
In both cases setting p = 0 recovers the corresponding convex formulations.
The third definition can be interpreted as saying that the change in the
gradient is increasing at least at rate p.

Example 4.1.7 (Strongly convex functions). The quadratic function x>

from Ezxzample 4.1.4 is 1-strongly convex. If the minimum eigenvalue of
A, which we denote Amin, 1S positive, then the quadratic form %ccTAa: 18
Amin-strongly convez. In particular, if A = M, then sx" Az = 3||z|3 is
A-strongly convex. None of the other functions listed in Example 4.1.4 are
strongly convex. However, if we restrict their domain, many of these functions
will be strongly convex. A notable example is the exponential function, which,
if restricted to [a,00) for any a € R, is exp(a)-strongly conver.
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Exercise 4.1.3 (Checking that functions are strongly convex). Ver-
ify using any of the equivalent definitions that the quadratic function
and quadratic form are strongly convex, and the exponential function
restricted to [a,00) is strongly convex.

4.2 Properties of Convex Functions

Convex and strongly convex functions have a large number of useful properties.
We describe just a few relevant ones here. The first two concern the minima
of convex functions.

Proposition 4.2.1. Assume that a convex function ¢ has a local optimum
x4, in the sense that for some § > 0 and all © # x4 such that || — z||2 < I,
we have ¢(x) > ¢(xy). Then if & is another local optima, ¢(x,) = ¢(x)).
Hence, x, is also a global optimum.

Proof. Assume for purposes of contradiction that ¢(x,) > ¢(x). For t €
(0, 1) sufficiently small, @; := (1 — t)x, + ta, satisfies ||x; — x4|l2 < §. Then
by the definition of convexity and the assumption that ¢(x,) > ¢(x)), we
have

$(ar) < (1= t)d(xs) + td(x,) < P(x).

But this contradicts the hypothesis that ¢(x) > ¢(x,) whenever || —x,||2 <
J, a contradiction. Hence ¢(x4) < ¢(x)). Applying the same reasoning with
roles of &, and &/ reversed, we conclude that ¢(x.) > ¢(x}), so in fact we
must have ¢(x,) = ¢(x)). O

Proposition 4.2.2. Assume that a strictly convex function ¢ has a local
optimum x,. Then for x € A with x # ., we have ¢(x) > ¢(x,). Hence,
x, is the unique global optimum.

Exercise 4.2.1. Prove Proposition 4.2.2.

The first one provides a probabilistic interpretation of convexity, which we
can motivate as follows. For t € [0,1] and z,y € A, define X 4, to be
a random vector which takes the value & with probability ¢ and the value
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y with probability 1 — ¢, the definition of convexity can be rewritten as
requiring that, for all ¢, &, y, ¢(E{X; 2 4}) < E{¢(Xtzy)}. This inequality
actually holds for all random variables when ¢ is convex:

Lemma 4.2.3 (Jensen’s inequality). The function ¢: A — R is convez if
and only if, for every random vector defined on A,

P(E{X}) < E{p(X)}.
If ¢ is concave, the direction of the inequality is reversed, so ¢p(E{X}) >
E{o(X)}-
Strongly convex functions also satisfy another quadratic lower bound.

Lemma 4.2.4. If ¢ is p-strongly convex, then
(4.4) (@' (x) = ¢ (y), 2 —y) > plx - yl3.
Proof. Add Eq. (4.3) to a copy of itself with & and y reversed in the copy. [J

Finally, we would like to be able to construct new convex functions using
other convex (and sometimes non-convex) functions. First, we have some
operations involving convex and linear functions.

Lemma 4.2.5 (Operations on convex functions). 1. If ¢; is p;-strongly
convez, then for a; > 0, the function ¢ = a1¢1 + azps is (a1 p1 + agpz)-
strongly convex.

2. If  : RP" — R is convez, then for any A € RP'*P qnd b € RY', the
function x — ¢(Ax + b) is convex.

The composition of two convex functions is not necessarily convex, as one
must be careful with the monotonicity properties of the outer function.

Lemma 4.2.6 (Composition of functions). If ¢ = ¢1 o ¢2, then ¢ is convex
if
1. ¢9 is convexr and ¢y is convex and non-decreasing, or

2. ¢ is concave and ¢1 18 conver and non-increasing.
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Exercise 4.2.2 (Operations on convex functions). Prove Lemma 4.2.5
under the assumption that all functions are differentiable.

Exercise 4.2.3 (Composition of functions). Prove Lemma 4.2.6 under
the assumption that all functions are differentiable.

4.3 Other Regularity Conditions
An important property that is “dual” to strong convexity is that of strong
smoothness.

Definition 4.3.1 (Strong smoothness). A function ¢ is L-strongly smooth
if for all x,y € A,

I¢'() — ¢/ ()12 < Lllz — y]2.

A function ¢ being L-strongly smooth can be interpreted as meaning that
the gradient of ¢ does not change faster than rate L. Hence, if it exists, the
operator norm of the Hessian matrix is bounded.

Proposition 4.3.2. If ¢ is twice-differentiable and L := supg¢ 4]|¢" ()2 <
oo, then ¢ is L-strongly smooth.

Exercise 4.3.1. Prove Proposition 4.3.2 using the fundamental theorem
of calculus for line integrals.

If a function is also convex, then it has a property known as co-coercivity:

Lemma 4.3.3. If ¢: A — R is conver and L-strongly smooth, then ¢' is
L-co-coercive: for all x,y € A,

16" () — &' ()3 < L{g'(x) — & (y), & — y).

If a function ¢ is strongly smooth and convex, then bounds like those for
strong convexity (specifically, Eqgs. (4.3) and (4.4)) — but in the opposite
direction — hold.
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Lemma 4.3.4. If ¢: A — R is convex and L-strongly smooth, then for all
x,yc A,

0< 6(@) ~ o(y) — (&) w —y) < & =yl
and hence

(¢'(x) — ¢'(y),x —y) < Lz —yl3

Thus, we conclude that if a function is L-strongly smooth and p-strongly
convex, L > u. The ratio p := L/p is called the condition number.

Example 4.3.5 (Regression and classification). The regression and classifi-
cation models described in Examples 1.1.1 to 1.1.3 are all convex, and are
A-strongly conver due to the \|z||3 regulation term. For logistic regression
and SVMs, the data-dependent term of the loss (or, equivalently, the loss
with A = 0) is not strongly convex. For linear regression, the data-dependent
term of the loss is strongly convex if the sample covariance % Zivzl zan
1s positive-definite, in which case the strong convexity constant is equal its

smallest eigenvalue.

4.4 FError of Taylor Series Approximations

We have now seen how convex functions are closely related to bounds on
first-order Taylor approximations while strongly convex functions are closely
related to bounds on second-order Taylor approximations. Thus, Taylor
approximation arguments are often used in combination with convex analysis.
For this approach to be fruitful, we must make use of the fact that error of
the approximation has an explicit form that, under smoothness assumptions,
can be bounded. We will consider only univariate functions. Extensions to
multivariate functions, while relatively straightforward, result in much less
transparent expressions.

Theorem 4.4.1 (Taylor’s theorem, Lagrange and integral remainder). If
¢: [a,b] = R is a p-times continuously differentiable function, then for any
x,u € [a,b],
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where ¢P) denotes the pth derivative of ¢ and, for some v € [z, u],

Alternatively,

[T ¢(p)(t) .
R, = /u o 1)!(95 —t)P~lat.

As an example application of Theorem 4.4.1, the next result provides a bound
on the expected error for a random function.

Corollary 4.4.2. Under the conditions of Theorem 4.4.1, if ¢ is a random
function satisfying E{|¢®) (v)|} < M for all v € [z, u], then

M
E{[Ry[} < ﬁlw — uf”.

Proof. Using the integral remainder formula, Exercise 2.4.5 and Theo-
rem 2.4.6, and the assumption that E{|¢®) (v)|} < M, we have

z 5(P)
E{|Rp|}=E{ / (i_(gl(x—t)pldt}

P e
SE{/;B (p71)!’x t| dt}

(

/ |x—typ Lat

—]a:—u|p
p!

4.5 FError Analysis of Stochastic Gradient Descent

We now turn to applying the results from this chapter to the error analysis
of stochastic gradient descent (SGD), which is described in Section 1.1. Our
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results will apply beyond the finite-sum optimization setting described there,
so we will adjust our notation slightly while keeping in mind that special
case. We will denote the function we wish to minimize as f, so our goal is to
estimate the minimizer

x, = argmin f(x).
xT

We assume access to a sequence of independent, unbiased stochastic gradient
estimates f1, f3,... such that for any « € A, we have f'(x) = E{f/.(x)}. So,
in the notation of Section 1.1, we could have f = £ and f,; = L}.. The SGD
algorithm update is therefore given by

(4.5) Th+1 < Tk — 77k+1f7§+1(93k)7

where {7y }ren is a sequence of positive step sizes. YVe useAEk as a shorthand
for the conditional expectation E(- | o,..., &, f1,..., f;,). The following
assumption formalizes the independence and unbiasedness requirements for
the gradient estimates:

Assumption 4.5.1. The sequence (Ji)keN s i.i.d. and for all k € N and
T € A, f’(a:) = Ek_l{fé(m)}

Define the stochastic gradient error by ¢ 1= ﬂ — f’, which by Assump-
tion 4.5.1 satisfies Ex_1(e;) = 0. Hence, the one-step update in Eq. (4.5) can
be rewritten as

T T — Noy1 LS (®n) + g () }

To keep the analyses in this chapter as simple as possible, we focus on the
case of strongly convex functions:

Assumption 4.5.2. There exists it > 0 such that the function f is p-strongly
convez.

We also require an assumption about the behavior of the stochastic gradients,
namely that they are co-coercive.

Assumption 4.5.3. There exists L > 0 such that for all k € N, f,; 18

L-co-coercive.

We will also assume that the noise variance at the optimum is finite:
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Assumption 4.5.4. There exists o > 0 such that for all k € N,
Ex{ i@ 3} < o

Often optimization error guarantees require the gradient error to be uniformly
bounded. However, this is a very strong assumption that rarely holds in
practice. Assuming bounded variance at the optimum is a much weaker
condition.

The analyses in this section will concern the squared error Ej := &) — x.||3.
We start with a useful lemma, which we will use for our error analysis
assuming either a fixed or decreasing step size.

Lemma 4.5.5. If Assumptions 4.5.1 to 4.5.4 hold and ny, € (0,1/L), then

(4.6) Ex—1(Ex) < {1 — 2mpp(l — nx L)} Ej_1 + 250>

Proof of Lemma 4.5.5. We have
(1) o o
k= 2413 = ||Tre1 — 13 — 2 (@he1 — @, Fh(@ro1)) + 2l Fr(zi1) |13
= |lzh_1 — 23 — 20 (@pmr — T, Fr(Th1))
+ il fe(®k—1) — fi(®s) + fr(z)l3
@) 2 o
< ka,l - J»‘*HQ — 2 (@Tp—1 — Xy, fk($k71)>

I I I
+ 208 fr(aen-1) — fela) 13 + 20kl fr() 13

(i)

7 —~
< @kt — @3 — 2@t — T, (1))

o N -
(4.7) + 20 L{f(®-1) = fi(®e), 2ot — 22) + 208 fi(@) |13,
where (i) follows from Eq. (4.5) and expanding the norm, (i7) follows from
the triangle inequality, and (iii) follows from using Assumption 4.5.3 to
bound the penultimate term. Next, take the conditional expectation of
Eq. (4.7), apply Assumptions 4.5.1 and 4.5.4, and then use Eq. (4.4) (since
Assumption 4.5.2 holds):

Ex—1(Ek)

< [l@p—1 — @l — 2 (@1 — @ Bpmr { fi(@p-1)})

7 7 7
+ 2 L1 { fi (1) — fo(@) ) zio1 — ) + 200 B | (@) 13}

< l@po1 — xul|3 — 206 (@h—1 — s, f'(TR—1))
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+ 207 L{f (z—1) — f'(Ts), Tp—1 — T) + 20307
= |lop_1 — @2 = 206 (1 — ML) (@1 — o, f(mp_1) — f'(22)) + 2020°
< {1 = 2mep(1 = L) }|wr—1 — @||3 + 27707

4.6 Error Analysis of SGD with Constant Step
Size

We are now ready to analyze the behavior of SGD with constant step size
nr = n. For SGD with constant step size, an inductive argument yields the
following error bound on the individual iterates:

Theorem 4.6.1. If Assumptions 4.5.1 to 4.5.4 hold and ni, = n € (0, ﬁ),
then for f:=1—2nu(l —nL),

2
(4.8) E(Ey) < 8@y — m.|[3 + ;”o—%

and therefore

91/2p71/2

—FO0.
e

E(|lzr — @4ll2) < 8|20 — 4|2 +

Exercise 4.6.1. Show that for nonnegative constants a,b > 0,

va2+b2 <a+b.

Exercise 4.6.2 (Error of SGD with constant step size). Prove The-
orem 4.6.1. [Hint: Using the geometric series formula ZIZ;OI ol =
(1—a*)/(1—a) will be helpful for proving the first inequality. The bound

from Exercise 4.6.1 will helpful for proving the second inequality.]

Theorem 4.6.1 provides a few useful insights. First, the only dependence on
the initial condition is through the first term, which decays exponentially
fast. Hence, SGD with constant step size has only very weak dependence on
xy. On the other hand, the second term indicates an irreducible expected



CHAPTER 4. CONVEX ANALYSIS 75

squared error of order 1. This irreducible error is scaled by the noise level
o2: as we might expect, noisier stochastic gradients leads to less accurate
estimates of x,. The irreducible error is also scale by the inverse of the strong
convexity constant p. A smaller p implies a the flatter function, which leads

to larger error in x,.

In Chapter 1 we saw that iterate averaging can provide much smaller error
than individual iterates. Generalizing the earlier definition of the iterate
average, for kg < k, the iterate average from ky to k — 1 is given by

We now show that, in fact, &g, has error of order n, which is superior to
a single iterate as long as 7 is fairly small (which is typically the case).
The result requires an additional smoothness assumption on the stochastic
gradients.

Assumption 4.6.2. There for the same L > 0 as Assumption 4.5.3 and a
constant M > 0, for all k € N and © € A,

-~

Er {If@)ll2} <L and  Epof|lfi(@)ll2} < M.

Recall that p := L/u is the condition number of f.

Theorem 4.6.3. If Assumptions 4.5.1 to 4.6.2 hold and ni, = n € (0,1/L),
then for o :== M/p,
E([|Zo:x — @.[2)
ono? o

PRRNTETE

(1+23/2p1/2)
1
+ m{gﬂmo - a:*||% +2(1+ p1/2)||a:0 — 2+ 21/2p1/20}'

Let us interpret the bound, treating the step size as fixed. The first term
in the bound is the irreducible error, which is of order n, an improvement
over the single-iterate bound. The second term is the error due to the Monte
Carlo (stochastic gradient) noise, which has the standard Monte Carlo rate
of 1/ k/2. The final term depends on the initialization, but decays at the
faster rate of 1/(nk). Since this error is primarily deterministic, it depends
on the “distance traveled” after k steps, which is of order nk. To improve
the dependence on the initialization by making is decrease exponentially fast,
we can start to average after k/2 iterations:
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Corollary 4.6.4. If Assumptions 4.5.1 to 4.6.2 hold and n = n € (0, 2L)
then for k even, o := M/u, and 8 :=1 — 2nu(l —nL),

(4.9)  E{||Zj00 — zll2}

9 2 1/2
ono o 3/2 1/2 200 3p 1/2
<
<2 uk1/2<1+2 )+ ot Z@+p?)
Ty — Ty
pglom el (o 4 iy £ g )
% K

Exercise 4.6.3 (Error of iterate averaging with constant step size). Use
Theorems 4.6.1 and 4.6.3 to prove Corollary 4.6.4.

Proof of Theorem 4.6.3. The proof is based essentially on a Taylor series
approximation argument, which starts with the observation that, by The-
orem 4.4.1, fi(xx—1) = fi(xs) + f(@s)(®r—1 — @x) + 1), Where 7 is a
remainder term. Rearranging and averaging, we obtain

mf l_m* ~

k
> {filaer) — folms) — e
—1

x| =

x| =
P%

~
I

Since f{(w*), cees ﬂ(w*) is essentially an i.i.d. sequence with mean zero, its
average is of order 1/k. Using Eq. (4.5), we have f} (1) = (xx—1 — xx)/7,
SO

1
’ac Ty —
> fi@e) 77]{( 0= Tht1)s

k
(=1

=

(4.10)

which is also of order 1/k. Finally the average of the remainder terms ry is
of order 7.

To make these arguments precise, we have

Fl@) (@it — x2) = fil (@) (@p—1 — ) + { (@) — fi (@) Hap—1 — )
= fr(@r—1) — fr(@) + (@) (@ro1 — @) — fr(@e1) + fh(z)
T T e

+{ (@) — Fl@) @i — @) .

IV
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After summing both sides, we first apply the triangle inequality, and then
use the definition of the spectral norm (see Appendix A.2):

1 k—1 k 1 k—1
E Z Ly — Ty E Z f”(a?*)ilg II[
=0 2 =0 2 =0 2
1 5= R,
_I%ZIIIZ + 11" *)_I%ZIVK
2 =0 2
< (1" () l2 Z +Hf” () 7"l2 fZHg
=0 2
k -1
+ {1 (20) 2 Z ||+ || f" ()™ Z
=0 2 E 2

Next, we take the expectations of both sides and bound each term in turn.
First, using Eq. (4.10), the triangle inequality, and Theorem 4.6.1, we have

f—
E(JI 45 Lelle)
1
< o pllmo = @il + E(lex — @)}

1 21/251/24

L 1 k/2
Snfkﬂmo—w*ﬂz-i-nfk{l—%u( —nL)} 4 |xo — xi|]2 + kW

21/24

2
< 2z — Sl
— nk”mo m*”? + 771/2,u1/2k

Using Assumptions 4.5.1 and 4.5.4 and Jensen’s inequality, the second term
can be bounded as

E(|1# X85 Well) < 77
By Corollary 4.4.2 and Assumption 4.6.2,

M|z — 2.I3
5 .

Ep—1 (Tg]) <

Combining this inequality with Assumption 4.6.2 and Theorem 4.6.1, we
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have

d

1 k—1
- Z 11,
=0

k—
M1
) < 5% E(||lze — x.3)
2

=0
k—1
M1 Mno?
<o > {1 =291 = L)} lzo — @3 +
=0
k—1
M1 Mno?
S35 {1—2n(1 = nL)}Ylzo — z. I3 +
=0
M 5 Mno?
< _
< gollwo - i + =

Similarly, for the fourth term,
k-1 k-1 1/2
1 2L
kzwg>§k{ Mm—m@}
/=0 2 /=0

2L (1 s 2n 52
< —% 3 — w0 — x5 + —
— kil/?{??,uk?” 0 *”2 ,LLO-

2L 232t/ 2 g
< — |l — .
= 7’/1/2,[,1,1/2]{3“&:0 :D*”Q /_,L1/2,I€1/2

(4.11) IE(

Since f is strongly convex, all the eigenvalues of f”(x,) are positive. So
|l f"(2,) |2 is equal to the reciprocal of the smallest eigenvalue, which is
upper bounded by 1/u. So, putting everything together, we have

E(llz < 2 21/2, o
PE([|Zox — 2ill2) < m”xo — ]2 + 771/2M1/2k + 12

M 5  Mno?
+ 2nluk,”$0 EB*H2 +
2L 23/21’/’71/20
g o~ e
2
1
+ m{gﬂwo — a2 201+ M) w0 — a4|2 + 21/2p1/20}’

where to obtain the last inequality we have used the assumption that n < L
and the definition p = L/pu. O
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Exercise 4.6.4 (Bounding the Hessian error). Prove Eg. (4.11). [Hint:
use the fact that f”(x,.) = E{f}(x,)}, where f; is an independent copy

of fl’;]

4.7 Convergence of SGD with Decreasing Step Size

We now consider the case when 1, — 0 for £ — co and wish to show that,
in fact, @ converges to the optimum @, = argming, f(x). Specifically, we
will focus on the widely used step size schedule n; = n/k®. The main result
is the following quantitative bound on E(E}):

Theorem 4.7.1. Under Assumptions 4.5.1 to 4.5.4, if nx = n/k® for o €
(1/2,1) and n € (0, 5), then the iterates of Eq. (4.5) satisfy

dao’n? n 202
200 — 1 ke

B(5) < oxp{ -5 047 = )} Ioo - 1B +

The term exp(—4Lk*=%)||@o—x,||3 is “transient”: it decays sub-exponentially
fast but depends on the (expected) initial squared distance to the optimum,
|zo — x«||3. The (asymptotically relevant) slowly decaying term i":f’ does
not depend on the initial conditions. Thus, taking o — 1 results in a faster
convergence rate; however, it also results in the transient term no longer
converging to zero as k — oco. Exercise 4.7.4 asks you to derive a bound on

E(Ey) that does converge to zero.

Proof of Theorem 4.7.1. Using Lemma 4.5.5 and the bound 1 — nL > 1/2,
we have the recursion

(4.12) E(Er) < (1~ p)llzn—1 — @13 + 20705

Applying Lemma 4.7.2 with ¢ = 202 and m = k/2 and using the bounds

k o 1 52 2
B 2 2
(4.13) > e > n—sy— and > nj <1 5o 1
t=k/2+1 =1
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yields the bound

k k k/2 2
20°ny
E(Ey) Sexp{—uZw}\wo—w*H%Jr?UQexp —p > | Y| +——
=1 t=k/2+1 =1 H
k k/2 2021
k
<expd = Y nep | llwo— @3 +207 D 07 | +
(=k/2+1 =1

_ dovo?n? 202
< exp{—%(l{l @ — 1)} (!wo — x5+ 7% _771 > + uk‘?'
O

Lemma 4.7.2. For p > 0 and non-increasing n > 0 with no < 1/p, if the
sequence 01,09, ... satisfies

ok < (1 — pmg)dk—1 + eng,

then for any m € [k],

k k m
(4.14) (5k<exp{—u2m}5o+cexp{—u Z 77@}(2 ) Clim

/=1 l=m+1

Proof. By induction,

k
(4.15) SH 1 — e 5o+02m H (1 = pampe).-

i=1 l=i+1

For the first term, using the basic inequality that 1 —a < exp(—a) (for
a € R), we have

k

H(1 — pne)do < eXP( ZMW) do-

(=1

For the second term, clearly for any m € [k],

k k m k
o TT Q=) =D _mf T 0= pme) + Z n; H (1 — pme) -
i=1 (=i+1 i=1 {=i+1 i=m+1 {=i+1
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Since p > 0, we then have
m k m k
* < (Zn?) IT a—=pme) < (Z 77?) exp (— > MW) :
i=1 t=m+1 =1 f=m+1

Since in addition 7y is non-increasing,

k k
ok < > mi [ (4= pme)
i=m+1 l=i+1
o : 0
(4.16) =0 2 i J] (0= pum < =R

i=m+1 l=i+1

Exercise 4.7.1. Prove Eq. (4.15).

Exercise 4.7.2 (Polynomial sum bounds). Verify the bounds given in
FEq. (4.13). [Hint: bound each sum by an integral]

Exercise 4.7.3 (Stick-breaking inequality). Verify Eq. (4.16) by showing
that, for any sequence f3; € [0,1],

k k
Yoo [[a-8)<t
i=1 l=i+1

[Hint: Imagine starting with a stick of length 1 and, at step i (i =
0,...,k—1), breaking off and discarding (1005;—;)% of the remaining
stick.

Exercise 4.7.4 (SGD error bound when o = 1). Using Lemma 4.7.2
and Eq. (4.12), derive a bound on E(E}) in the case that « = 1. The
term in the bound depending on ||zo — x+||3 will be polynomial in k; the
other term will be of order 1/k. [Hint: use m = k, so the the middle
term in the right-hand size of Eq. (4.14) is zero.]
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Chapter 5

Metrics for Probability
Distributions

With Applications to Convergence of SGD to Stationarity

Introduction to measuring the distance between probability distributions,
using Wasserstein distances. As an application, proves convergence to
stationarity of SGD with constant step size.

5.1 Metric Convergence

Convergence in distribution is often too weak of a guarantee for practical

purposes. If Xj LA X o we are only guaranteed that expectations of bounded,
continuous functions converge. Moreover, for any particular bounded, contin-
uous ¢, E{¢(X}y)} may converge to E{¢(X )} arbitrarily slowly. But many
functions of interest, such as those required to compute means and variances,
are not bounded. So, it is preferable to use stronger, quantitative measures
of convergence that also will imply convergence in distribution. To do so, we
need to define a notion of distance between probability distribution.

Definition 5.1.1 (Metric). Given a set S, a function m : S x S — R is
called a metric if the following for all x,y,z € S:

1. m(x,z) = 0 (the distance from a point to itself is zero);

2. if v # y, then m(xz,y) > 0 (the distance between distinct points is
positive);

3. m(z,y) = m(y,x) (distance is symmetric); and
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4. m(z,z) <m(z,y) +m(y,z) (the triangle inequality holds).
The pair (S,m) is called metric space.

We can use a metric defined on a set a probability distributions to define a
new notion of convergence.

Definition 5.1.2 (Metric convergence). For a metric M on set of probabil-
ity distributions M, a sequence of random variables X1, Xo, ... s said to
converge in M to a random variable X if

lim M(Lx,,Lx..)=0.

k—o0

We then write X}, M Xoo. Note that we must have Lx, € M for k € NU{oo}
for these statements to be well-defined.

We will be particularly interested in the following class of metrics for proba-
bility distributions.

Definition 5.1.3. Fiz a metric space (A,m) and a constant p > 1. For the
distributions m and 7' on A, the (p, m)-Wasserstein distance is given by

Wyl ) =it { [ m(m,w%(dx,dy)};,

where the infinum is over distributions v on A x A such that v has marginal
distributions m and ©'; that is, m(x) = [y(z,dy) and 7'(y) = [~(dz,y).

Importantly, a coupling v* exists that realizes the infinum; that is, such that
1

Wpm(m, ') = {[ m(z,y)Pv*(de,dy)} 7. It follows from Jensen’s inequality

that for 1 <p < ¢q, Wy (m,7") < Wy (m, 7).

When p = 1, there is an alternative characterization of Wasserstein distance
that directly relates to the goal of estimation, which is based on the following
notion of smoothness.

Definition 5.1.4 (Lipschitz continuity). Let m be a metric on A. A function
¢ : A — R is L-Lipschitz (with respect to m) if |¢(x) — d(y)|l2 < Lm(x,y)
for all x,y € A. We denote the minimal Lipschitz constant L by ||¢|| L.
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So, if a function is L-Lipschitz, then it is not changing at more than a linear
rate L with respect to the metric m. It turns out that
Wim(m,7') = sup |r(¢) —'(¢)|-

¢ A—=R

lllL<1
Thus, if the 1-Wasserstein distance is small, we can accurately approximate
the expectation with respect to m of the Lipschitz function ¢ by an expectation
with respect to 7'.

Two choices of the metric m are of particular interest. The first is m(x,y) =
1(x # y), which for p = 1 induces the total variation distance D (7, 7'). In
this case ¢ is L-Lipschitz if sup,, f(x) — infy f(x) < L. In other words, total
variation distance bounds the difference between expectations of bounded
functions.

The second choice is m(z,y) = ||z — yl|2, the Euclidean distance, in which
case we will use the shorthand notation Wy(w,n’). In this case a differen-
tiable function ¢ is L-Lipschitz if ||¢/(z)||2 < L for all . Small Euclidean
Wasserstein distance can imply small differences in means, covariances, and
standard deviations.

Theorem 5.1.5. For distributions u and v on RP, let X ~ p and Y ~ v.
If Wi (u,v) < g, then the difference in the means is bounded as

(5.1) [E(X) —E(Y)[2 <e.

Define the covariance matrices 3 := Cov(X) and V := Cov(Y'), and let
s == min{| S5 VIV, If Walu,v) < e, then Eq. (5.1) holds, and,
furthermore, the difference in marginal standard deviations is bounded as

1/2 1/2
max|¥,/" —V <e
de[g]‘ dd dd | <

and the difference in the covariances is bounded as

1% = V2 < 2e(s +¢).

5.2 Convergence to Stationarity of SGD with Con-
stant Step Size

When the step size is constant, the SGD iterates form a homogenous Markov
chain, so it is plausible that the iterates could converge to a stationary
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distribution, which we will tentatively denote by 1. The error bounds in
Chapter 4 for the individual iterates and the iterate average suggest this is
true. Let P, denote the SGD Markov transition kernel with step size n. We
now aim to show that the iterates of SGD with a constant step size converge
to a unique stationary distribution under weaker assumptions than those
required for the error bounds.

Theorem 5.2.1. If Assumptions 4.5.1 to 4.5.3 hold and ni, = n € (0,2/L),
then the SGD iterates converge to a unique stationary distribution vy. In
addition, for any initial value xq, all k >0, and f:=1—2nu(l —nL/2),

(5.2) W2(P (0, ), vy) < B / a0 — 2|2y ().

Proof. The proof makes use of the coupling characterization of the Wasser-

stein distance. Toward that end, we consider two copies of the SGD iterates,

which we denote as ($1(€1)) ken and (a:l(f))keN. We denote their initial distribu-

tions by, respectively, V((]l) and 1/((]2), and couple the initial iterates so that

W22(u(()1)7 1/(52)) = E(H:L'(()l) - :1382)”%). Furthermore, both copies use the same
noise:

i) e al) —n{f () + e (z))
22, 2 —n{f'(@?) + epn(@)).
By the definition of the Wasserstein distance,
W3V Py Py < E(at) — 2P)3)
= Elllzf’ —nfi(2y’) — {= - nfi(z)}H3]
= Efl|z{” — &P 13 + )1 Fi (§") — Fi )13

5.3
>3 — 2 E[(z)" — 2, fi(2") - fl(@5))]:

Since the ¢ are independent of :B](:) and scgf), for i,j € {1,2},

E{(en(2), 2)} = EE{(ex(2), 2)}] = 0.
Thus, we can rewrite the final expectation in Eq. (5.3) as
E[(zy) — 28, i) - Fl(@$)]
— B[ — 2, f'(@") + e1(a(") - f(2?) - e1(x))]
(5.4) B[z - 22, F'(a") - F(@?))).
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Hence,

W2 Py v Py) L Eflal)) — @1 + 21 F (= (”) THEIIE

0

—omE(a) - 2@, F (@) - F@f))
(i)
< Bl — 2 |13)

—2y(1 —L/2) El(2)” — 2. f'(x) - f(@))]
(4i7)
< {1—2um(1 —nL/2>}E<||w —z|13)
:5E(on _% H2

where (i) follows from Eqs. (5.3) and (5.4), (i7) follows from Assumption 4.5.3,
and (4i7) follows from Assumption 4.5.2. It follows by an induction that

W04 Py Py < Bl - (2)H2)
< BE (Hmk 1_33 1”3)
(5.5) < B wig) w?).

We omit the proof that Eq. (5.5) implies that the iterates converge to a unique
stationary distribution because it relies on results from real analysis. O

Exercise 5.2.1. Use Eq. (5.5) and the fact that the the iterates converge
to a unique stationary distribution to show Eq. (5.2) holds.

A benefit of establishing that the SGD iterates converge to a stationary
distribution arises from the following characterization of the bias of the
stationary distribution mean &, := [ @v,(dz). Recall that e, := f' — f; and
let C(x) := Cov{ei(x)}. We require a new assumption:

Assumption 5.2.2. The following hold:

1. For alln €{2,...,5}, supgell f™(z)|| < oo.

2. The function C is three-times continuously differentiable and there
exist constants Ce,l. > 0 such that

cm < C.{1 — |2}
ne%ax3}|! (@)|| < {1 + ||z — |2}
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3. For p. := max(6,2(: +2), E{|le1(z.)|5° } < .
We write O(g(n)) to denote a function r(n) that, for some ¢ > 0, satisfies

llr(n)]|2 < cg(n) for all n sufficiently small.

Theorem 5.2.3. If Assumptions 4.5.1 to 4.5.3 and 5.2.2 hold, then there
erists a vector v such that

Ty — ., = nv + O(1°).
We will not prove this particular result. Instead, we focus on an important
implication when combined with Theorem 5.2.1, which is that we can dramat-
ically improve accuracy by using Richardson—Romberg extrapolation.
The idea is to combine estimates of &,) and Z2, such that that the O(n) errors

cancel out, resulting in an estimate of @, with O(n?) error. First note that it
follows from Theorems 5.1.5 and 5.2.1 that for B(n, o) := [||zo—||3v,(dz),

E(x(") — &,| < B(n, z0)3>.

Therefore,

B(2\) — @, <

IN

1 ~
%B(nv CU()) Z 66/2
=0
< l B(n7~$0) ]
— k11— 61/2
———
0(777760)

Combining this bound with Theorem 5.2.3, we have
E(@}) — 2. = 1A+ 1(n,z0, k),
where 7(n, xo, k) is a remainder term bounded as

7 (n, @0, k)||2 < cn? + C(n, o) / k.

Therefore, we can use the extrapolated estimate 2 :Egn,z — :E(()?kn) of x,, which

has bias bounded as
IE{22() — 227 — . }la = |127(n, @0, k) — r(27, 20, k) |2
2C(n, o) + C(21, o)

(5.6) <6en? + ; .
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Letting 0z = /2|y — x,||2, we thus have the following summary of the
expected error of three estimators for a, using constant-step size SGD, which
only reports dependence on 7 and k:

Estimator T Tr/2:k 2:1‘32%2,1 - :El(c%k
Error bound Eq. (4.8) Eq. (4.9) Eq. (5.6)
Irreducible error on'’?)  O(n) O(n?)
Initialization-dependent error ) O i%) —

Other transient error 0 O k11/2 + nik) -

The transient errors terms for the Richardson-Romberg extrapolation are
omitted, as we have not explicitly developed them. But we should expect
them to be of the same order as the in the iterate average case, since it is
formed by taking the difference of iterate averages.



Chapter 6

Designing Markov Chains

With Applications to Developing MCMC Algorithms

Develops tools for defining Markov chains with a desired stationary dis-
tribution including detailed balance and reversibility, and compositions
and miztures of kernels. As an application, introduced two classes of
MCMC algorithms: the Metropolis—Hastings algorithm and the Gibbs
sampler.

6.1 Detailed Balance

Definition 6.1.1 (p.d.f. and p.m.f. notation). If a distribution (e.g., 1) has
a p.d.f. (or p.m.f.), we will denote as h,. We will always denote probability
kernels using uppercase letters (e.g., P). If for all x € A the kernel (e.g.,
P(x,-)) has a p.d.f. (or p.m.f.), we will denote it using the a lowercase letter
(e.g., p(x,y)). To streamline discussions, we will refer to both p.d.f.s and
p.m.f.s as “densities,” which the understanding that we will not miz p.d.f.s
and p.m.f.s unless stated explicitly.

Checking the stationarity condition v = v P directly can be cumbersome
because it involves a (potentially complicated) integral. A particularly
convenient sufficient condition for stationarity is called detailed balance. For

distribution u, define the product probability measure p® P on A x A
such that for A, B € P(A),

(o P)AxB) = [ [ Ple.dyu(deo)
AJB
In particular, if X ~ p and Y has conditional distribution Y | X ~ P(X, ),
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then (X,Y) has joint distribution p ® P. If p and P both have densities,
then density of p ® P is u(x)P(x,y).

Definition 6.1.2 (Detailed balance). The Markov chain with transition
kernel P is said to satisfy detailed balance with respect to v if, for all
A, BcP(A),

(r® P)(Ax B) = (v® P)(B x A).

Lemma 6.1.3. When densities exist, Definition 6.1.2 is equivalent to: for
some S € P(A) with v(S) =1 and for all x,y € S,

hl/(a:)p(w7 y) = hl/(y)p(y7 LB)

Proposition 6.1.4. If P satisfies detailed balance with respect to v, then v
s an invariant distribution of the Markov chain with kernel P.

Proof Using the definition of v P and the fact that by construction P(x, B) =
[ P(x,dy), we have

5AHQEWM)

:Aémﬁwwmy

Then using the definition of ¥ ® P, the detailed balance assumption, and the
fact that P(x,-) and v are probability measures, we have

/ / P(x,dy)v(de) = (v ® P)(A x B)
AJB
)(B x A)

// (z,dy)v(dx)
/B v(dx)
= v(B).
O

If a Markov chain satisfies detailed balance, it is said to be reversible

with respect to v: when Xy ~ v, for all k € N, (X¢, X1,..., Xk—1, Xk) 4
(X%, Xk—1,...,X1,X0). In other words, the distribution of the Markov
chain remains the same if it is “run in reverse.”
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Example 6.1.5 (Detailed balance for a finite-state Markov chain). Following
the set-up and notation from Ezxamples 3.2.2 and 3.5.2, we can write the
detailed balance condition as requiring that, for all d,d € [D],

TaKga = g Kq q.

As a first example, consider a Markov chain that stays at its current state,
goes to the previous state, or goes to the next state with equal probability.
More formally, the Markov chain has the transition kernel given by

1/3 ifd =d—1 mod D

1/3 ifd =d

Koo = o
1/3 ifd=d mod D +1
0 otherwise.

This Markov chain’s unique invariant distribution is the uniform distribution
mq = 1/D. It satisfies detailed balance as well. For example, for D > 3,

1 1
m K19 = DX3= mo Ko 1

and

1
7T1K1,3 = 5 x 0= 7T3K371.

As a second example, consider a Markov chain that stays at its current
state or goes to the previous state with equal probability. More formally, the
Markov chain has the transition kernel given by

1/2 ifd =d
Kgg = 1/2 ifd =d mod D +1
0 otherwise.

This Markov chain’s unique invariant distribution is the uniform distribution
but it does note satisfy detailed balance since it can only move in one direction.
For example, for D > 2,

1 1
m Ky = D X3
but

1
7T2K2’1 = 5 x 0=0.
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Example 6.1.6 (Gaussian AR(1) process, continued). The AR(1) process
from Exzample 3.5.8 is reversible with respect to the invariant distribution
v =N(0,{1 —a?}71X,). To see since, we calculate

hy()p(, y)
= log/\f(ac ‘ 0, {1 - a2}_128)N(y | T, 2?)

1-a® 7,4 1 Ty—1
=g T X x— E(y —ax) X (y — ax) + constant
1
—5{(1 —aHx'E e 4y 'Sy — 20Dy + a2mT2€_1m)} + constant

1
—i{xTﬁglm +y By - ZamTZgly} + constant.

Since the final expression is symmetric in & and y, we conclude that h, (x)p(x,y) =
h(Y)p(y, ).

6.2 Combining Markov Kernels

For MCMC, we will often want to combine Markov kernels that have the
same invariant distribution. We previously saw how to combine kernels via
composition. Another way to combine kernels is via linear combination.

Definition 6.2.1. For wi,ws > 0, the mixture wy P + wo Py of kernels Py
and P» is defined as

(w1P1 + ’LUQPQ)($,A) = wlpl(w,A) + ’LUQPQ(QZ,A).

If wy + we = 1, then mixing can be interpreted as transitioning according
to Py with probability w; and according to P, otherwise (with probability
Wy = 1-— wl).

Lemma 6.2.2. If P, and P> are valid transition kernels, then so is wP; +
(1 —w)Py with w € [0,1].

Exercise 6.2.1. Prove Lemma 6.2.2

Like composition, mixing is associative: (w1 Py + woPs) + wsPs = w1 Py +
(we P +ws3Ps). So, we can write wy P; + we Ps + w3 P3 without any ambiguity.

Composition and mixing preserve invariant distributions.
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Lemma 6.2.3. If P| and Py have invariant distribution v, then so do Py P»
and wP; + (1 — w) Py (for w € (0,1)).

Exercise 6.2.2 (Composition and mixing preserve invariant distribu-
tions). Prove Lemma 6.2.3.

However, while mixing preserves reversibility, composition does not. This
makes some intuitive sense since transitioning according to P; then P» is not
the same as (when running the chain backward) transitioning according to
P> then P;. However, the composition P; P, P, does preserve reversibility.

Lemma 6.2.4. If P; and P» are reversible with respect to v, then so are
PiPyPy and wPy + (1 — w) Py (for w € (0,1)).

Proof. Using the definition of composition and the reversibility assumption,
0% P1P2P1(A X B)

_ / lxe Ay € Ay € Ay e Bu(dz)Pi(z,dy) Py, dy") Py (y", dy)
= /]l(:v cAy c Ay € AyecBu(dy)P(y,dz)P(y,dy")Pi(y", dy)
= /]l(m cAy c Ay e Ay e Bu(dy Py’ dy )P (y,dz) P (y", dy)

= /11(93 cAy e Ay e Aye B(dy)Pi(y,dy")P(y", dy') P (y', dx)
=R P1P2P1(B X A)

Exercise 6.2.3. Prove Lemma 6.2.4 for wP; 4+ (1 — w)Ps.

6.3 Markov Chain Monte Carlo

The most widely used MCMC method is the Metropolis—Hastings (MH)
algorithm. Construction of the MH transition kernel P depends on the
choice of a base Markov kernel @ : A x P(A) — [0,1] called the proposal
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distribution. Assume that 7 and Q(«, -) have densities. Given the current
state X}, procedurally the first step is to sample a proposal X;, b~
Q(Xk, ). Define the Metropolis—Hastings acceptance probability

hx(y)a(y, x)
ol y) = mm{hw(@q(x,w’l}'

With probability a(Xg, Xj ;) set Xry1 = X, (the proposal is accepted)
and otherwise set X1 = X} (the proposal is rejected).

Intuitively, a proposal is more likely to be accepted when the new state has
higher probability and the probability of transitioning from the new state to
the old state is large compared to the reverse transition. Since a(x,y) only
depends on 7 through the ratio hr(y)/hr(x), the p.d.f. (or p.m.f.) h; needs
to be known only up to a multiplicative constant.

The MH Markov transition kernel is given by

(6.1) Pz, A) = /A o(@, y)a(@, y)u(dy) + a(@)sa(A),
where
() = /A {1 - o, y)}a(@, y)u(dy)

is the probability of rejection. The kernel satisfies detailed balance with
respect to w, and hence is reversible and has invariant distribution .

Proposition 6.3.1 (The MH kernel satisfies detailed balance). The MH
kernel defined in Eq. (6.1) satisfies detailed balance with respect to .

Proof. We have
™ ® P(A x B)

// o(z, y)q(z, y)p(dy)p(de) + // x) () oz (dy)p(de) .

*

Observe that for all z,y € A,

hﬂ—(m)a(a’?, y)Q(% y) = hw(m)q(m’ y) min{m’ 1}

= min{h.(y)q(y, x), hx(x)q(z,y)}
== hw(y)a(y7 a:)q(y, :I?),
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SO

o= [ [ ety 2ty 2)n(ay)n(ae)

/B /Ah’T x)q(y, x)p(dz)pu(dy).

/ (3 ( € B)u(d)

A

hS
sy

On the other hand,

/h,r )a(x)l(x € AN B)u(dx)

Jyt
= [ [ @it aytia).

Combining the two previous displays, conclude that 7 ® P(A x B) = 7 ®
P(B x A). O

(z)a(z)l(x € A)u(dx)

For now we restrict ourselves to three canonical choices for the proposal
distribution.

Example 6.3.2 (Independent Metropolis—-Hasting algorithm). Given a dis-
tribution Qq, the independent MH algorithm uses proposal Q(x,-) = Qo that
1s independent of the current state x.

Example 6.3.3 (Random-walk Metropolis—Hasting algorithm). Let gy be the
density of a mean-zero, symmetric random variable such as N'(0,02I). The
random-walk MH algorithm uses proposal with density q(x,y) = qo(x — y).
Hence, before the MH correction, the proposal behaves like a random walk.

Example 6.3.4 ((Two-stage) Gibbs sampler). The two-stage Gibbs sampler
is based on breaking up the parameter into two pieces, T = (x(1), T(2)), such
that the conditional densities hx(x (1) | T(2)) and hx(x () | T(1)) are easy to
sample from. First, consider using the proposal density q1(x,y) = hx(y(1) |
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x(2))1(y(2) = ®(2)). In this case the acceptance probability is always 1 since

)
(1)
by | y@)he(y@) (2 | ’y(z))]l(y(z x(2))
 ha(zy | @) hae (o) ke (Y | 22) L (Ye) = @)
~ he(yy [ @) he(@ @) he (1) | T(2))
 ha() | ®02)ha(22)he (Y1) | 2(2))
=1.

Similarly, using the proposal g2(x,y) = hx(y2) | 1)) 1(ya) = x)) also
has acceptance probability 1. Thus, Q1 and Q2 are reversible transition
kernels with invariant distribution w. Hence, by Lemma 6.2.3, the two-
stage (Gibbs transition kernel Pg = Q1Q2 also has invariant distribution
w. However, Pg is not reversible. On the other hand, by Lemma 6.2.4, the
randomized Gibbs kernel Pra = 0.5Q1 + 0.5Q2 and the symmetrized Gibbs
kernel Psg = Q1Q20Q1 are reversible.

Example 6.3.5 (Gibbs sampler for a normal-gamma model). Consider a
model for observed data' Y € RY with parameters © = (m,7), where m € R
is the mean and T € Ry is the precision (inverse variance) of a mnormal
distribution:

T ~ Gam(a, b)
m |7 ~N(0,1/(\7))
Y, |m, 7 ~N(m,1/7) (n=1,...,N),

where the density of the gamma distribution Gam(a,b) is Gam(t | a,b) =
betele= /T'(a) (with t € Ry ). The hyperparameters X, a, and b are consid-
ered fixed constants. To derive the Gibbs sampler for this model, we must
find the conditional distributions T | m,Y and m | 7,Y. First, we write out
the log joint density:

A 1
logp(r,m, ¥) = (a — 1) logT — br+ ~"o'm? +

from N (m|0,1/(A7))

log T

from Gam(7|a,b)

N

N
+—%Z(Yn—m)2+?log7+c,

n=1

from N(;jnhn,l/T)
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where ¢ is a constant that depends only on the (fized) model hyperparameters
A, a, and b. Now, to find the conditional distribution 7 | m,Y , we need only
consider the terms that involve T, which after gathering terms with the same
T dependence, yields

N
N+1 1 ) ,
logp(t | m,Y) = <a+2—1> IOgT—{b+2Z(Yn_m) }T-i-c,

n=1

where ¢ is a constant the does not depend on 7. Recognizing this as the log
density of a gamma distribution, we conclude that 7 | m,Y ~ Gam(ay,by),
where ay = a + % and by == b+ %25:1 (Y, —m)2. Similarly, for the
conditional distribution m | T,Y, after some algebraic manipulations, yields

N 2
N 1
_TIN+A) (m N+/\ZYi> Lo
n=1

2
where ¢’ is a constant the does not depend on m. Recognizing this as the

log density of a normal distribution, we conclude that m | 7,Y ~ N (Yn,vn),

Vi - 1 N . 1
whe’l“e YN — m anl }/Z a/n/d UN = m

logp(m | 7,Y) =

Exercise 6.3.1 (Gibbs sampler for a nonnegative matrix factorization
model). Consider the a nonnegative matrix factorization model for ob-
served count data Y € NNXP and parameters @ = (L,R,Z), where
LeRYVE Re[0,1)%P S8 Ryg =1, and Z € NN*PXK | The idea
is that the data are explained as linear combinations of K latent factors
Ry = (Rg1,-..,Rkp) (k=1,...,K). The parameter Ly represents the
loading of the kth factor on the nth observation Y, = (Yn1,...,YaD).

Lnk%dGam(a,b) (n=1,...,N;k=1,...,K)

Ry, ™ Dir(a,...,q) (k=1,...,K)
Yoq | L, R ™ Poiss(S"K | LoxRea) (n=1,...,N;d=1,...,D)
Zna | L R,Y ™ Multi(Yyq, Poa) (n=1,...,N;d=1,...,D),

where ™ denotes distributed independently of other random variables and
P, = (Lnkde/(Zle LngRgd))le.a The hyperparameters a, b, and o
are considered fized constants. The conditional distribution Z,q | L, R,Y
s given. Compute the other two conditional distributions required for the
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Gibbs sampler, namely the distributions of Lpy | R, Z,Y and Ry | L, Z,Y .

“For o € RY and ¢t € RY with ZdDzl tq = 1, the density of the Dirichlet distribution

d
Dir(as,...,ap) is given by Dir(t1,...,tp | a1,...,ap) = T(X5, aa) TT2, trd(Td)’
For A € Ry and y € N, the p.m.f. of the Poisson distribution Poiss(\) is given by
Poiss(y | A) = )‘y;]ﬂ‘ For p € RY with 35 pr = 1, M € N, and z € N¥ with
K 2 = M the p.m.f. of the multinomial distribution Multi(M, (p1, ..., px)) is
given by Multi(z | M, (p1,...,pKk)) = (M) ,I::lpzk.

z




Chapter 7

Small Sets and Irreducibility

With Applications to Markov Chain Law of Large Numbers

7.1 Irreducibility and the Law of Large Numbers

We begin by investigating when a Markov chain satisfies a strong law of large
numbers (LLN) similar to the i.i.d. version given in Theorem 2.6.11. For
a Markov chain to satisfy an LLN, it must be ergodic, which, informally,
means that the Markov will not get “stuck” in some part of the state
space and thus fail to visit “the whole state space.” The transition kernel
P(x,A) = 6z(A) from Exercise 3.3.3 produces a non-ergodic Markov chain
since P(X}, = x | Xo = «) = 1: the chain is almost surely constant. To avoid
such pathologies, we require an #rreducibility assumption, which guarantees
there is a specific kind of set, called a small set, which the Markov chain
will always return to.

Definition 7.1.1 (Small set). Call C € P(A) a small set with respect to
a probability measure p if there exists 5 € (0,1) such that, for all x € C and
AeP(A),

P(z, A) > Bu(A).

The key feature of a small set is that, when the chain is in the small set,
it transitions “somewhat uniformly” like the probability measure p scaled
down by S. For an LLN to hold, we must ensure that, no matter where the
Markov chain, it will eventually reach a small set.

100
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Assumption 7.1.2 (Irreducibility). There ezists a small set C such that
for all x € A, there exists k(x) € N such that

PF@) (g, C) > 0.

Example 7.1.3 (Irreducibility of an AR(1) process). Recall the AR(1)
process from Example 3.1.5 given by

X = aXp1 + &g,

where € = (ek)ken 18 a i.i.d. sequence of random variables satisfying E(gg) =
0. Assume that € has a continuous, everywhere positive p.d.f. f. For
A € P(RP), define the volume function!

AA) = /Ada: = /]l(ac € A)de.

For some r > 0, let C = {x € RP : ||x|]z < r}. Then for all x € C and
A€ P(RP),

Pz, A) = /A f(y — ax)dy

> fly — ax)dy
ANC

> inf f(y—ay) ></ dy
y,y'eC ANC
ANANC)

Hence, C is small with 8 = ANC)infy yec f(y — o) and p = )l((]) )
Similarly, for any « € R,

P(a,C) = /C fly = aw)dy > il f(y - az) x \(C) > 0.

Hence the AR(1) process satisfies Assumption 7.1.2.

Exercise 7.1.1 (Irreducibility of random-walk MH). Show that the
random-walk MH algorithm (Example 6.3.3) on A = RP satisfies As-
sumption 7.1.2 if qo is continuous and everywhere positive and h, is
continuous.

!This definition is a little informal. More precisely, X is the Lebesgue measure.
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L |

Theorem 7.1.4 (Markov chain law of large numbers). If Assumption 7.1.2
holds and P has an invariant distribution w, then there is a set S C A
satisfying w(S) = 1 such that for all x € S and all ¢ : A — R such that
m(p) < 0o, the Markov chain X with initial distribution 0, and transition
kernel P satisfies

¢(Xe) =7(¢) as.

Remark 7.1.5 (Ergodicity). With a little additional work, one can also
show that, under the conditions of Theorem 7.1.4, for x € S and A € P(A),
limy oo PF(x, A) = w(A). A Markov chain satisfying this condition is said
to be ergodic.

7.2 Proof of Markov Chain Law of Large Num-
bers*

The proof of Theorem 7.1.4 is rather involved, so we start with an overview.
The main idea is to construct a Markov chain {(X}, Yx)}xen on the extended
state space A x {0,1} such that blocks of the chain marked by Y, = 1
are independent and identically distributed. Define the first regeneration
time Tp = min{k € N : Y}, = 1} and the successive regeneration times
T, :=min{k >T;_1 : Yy =1} (:=1,2,3,...). Hence the random variables
Gi(p) = Z?:_lel ¢(X}) are ii.d.. This ii.d. structure will (eventually)
enable us to apply the standard strong LLN. However, a few facts must be
checked first:

1. We must confirm that P(7; < oo) =1 for all 4 € N, and in particular
that P(Th < oo) = 1 and that P(T; — T;—1 < o) = 1. If not, we may
never realize the infinite sequence of random variables {(;(¢) }ien.

2. We must show that E{¢;(¢)} = Zn(¢), where Z = E(T; — T;—1).

3. Finally, we must verify that the invariant distribution is unique.

We now describe each step in further detail, although some parts we will
leave as sketches.
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Step 1: extended Markov chain construction. Let s(x) := fl(x € C)
so P(x, A) > s(x)u(A) for all x € A and A € P(A). Hence, we can define
the (homogenous) transition probabilities for the extended Markov chain to
be

P(Xp € A, Yy =1] Xp =2,Y, 1) = s(x)u(A)
P(Xp €AY, =0| Xp_1 =2,V 1) = P(x,A) = Pz, A) — s(x)u(A).

Note that by construction p(m, A) > 0, so the transition probabilities are
valid. Moreover, the marginal law of the X component of the Markov chain
is the same as the original Markov chain since

P(Xp € A| Xj—1 =x)

=P(Xp€AY,=1| X1 =2,V ) +P(Xp €AY, =0 | Xj_1 =, Y1)
= s(x)u(A) + P(z, A)

= P(x, A).

On the other hand, the transition probabilities of the Y; marginally satisfy

P(Yk =1 | Xk—l = iL’,Yk_l) = S(LL')

(7.1) PYy=0|Xp_1=2,Y1)=1—s(x).

Note that s(x) = 0 unless € C, in which case s(x) = . Thus, when Xj_;
is in the small set, with probability 5 the chain “resets,” with the new state
X, distributed according to u independent of X _1. This resampling event
is recorded by setting Y, = 1, so

(7.2) P(Xp € A| Xpy =2, Yi = 1) = pu(A).
Finally, we will always take Yy = 0. We will write IP;, to specify that
LX) = n when necessary.

Step 2: characterizing the regeneration times. First, observe that the
distribution of Ty under P, is the same as T; — T;_1 under P [for any choice
of Lx,]. Now,

P(XreATy>k| X1 =2,To >k—1)

(Xp €AY =0| X1 =2,Y1=0,...,Yy =0)
(Xp €AY, =0 Xp1 =2,Y,_1 =0)

p(w,A),

P
P
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so we can conclude that
(7.3) P (X € A, Ty > k) = nP*(A).

Define the measure v by
o0 ~
A) =3 Pt (a)
k=0

where uP° := pi. Using Eq. (7.3), we can now conclude that

Z =E(T; - Tj_,) = ZIP’ (Tp > k)

= Z}P’M(Xk e ATy > k)
k=0

= uPHA)
k=0
=v(A).

Using similar reasoning, we also have that

To
(7.4) E{G(¢)} = { Z ¢Xk} M{Zgb(Xk)}:/cb(w)v(dw
k=T;_ k=0

Finally, using Eqgs. (7.1) and (7.3) we have that

P, (Ty = k) = /P(Yk = 1| X4y =, V1 = 0)uP" ! (da)

:/s(a:),upkl(dw)
= N’Pk_l(s)a

SO

u(Th < 00) Zqu L(s) = v(s).

Step 3: finiteness of T; — T;_1. Let Ly := max{¢ € [k] : Yy = 1}, so the
event {Tp < k} = U§:1{Lk = (}. Also, the marginal distribution of Y} is

(7.5) P, (Vi = 1) = nP*1(s).
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We have the identity

k
Pr(Xp € ATy <k)=> Pr(Xj €A Lp=1)

/=1
(i) ©
=) Pr(Xp €AY, =1,Y1=0,...,Y,=0)
=1
“)ZP D)X P(Xp € A, Yip1 =0,.... Y, =0| Yy =1)

Z“)prf )X P(Xp g € AYi=0,..., Y =0|Yy=1)

v

:ZWP‘ (X € ATy >k — 1)

s) Z nPh(4)
=1

where (i) follows from the definition of Ly, (i7) follows from the definition
of conditional probability, (iii) follows from homogeneity of the Markov
chain and Eq. (7.5), (iv) follows from Eq. (7.2) and the definition of T, and
(iv) follows from 7 being an invariant distribution for a Markov chain with
transition kernel P and Eq. (7.3). Hence, after replacing ¢ with k — ¢, we
have

P (Xp € A) =P (X € ATy > k) +7(s Zupf

Letting A = A and then taking the limit ¥ — oo and using the definition of
v, we obtain

k_ ~

=P (To > k) + 7 (s) Z;LPZ(.A)

=0
(7.6) 1 =P, (Tp = o0) + w(s)v(A).
Thus, v(A) = Z = E,[Tp] must be finite since § > 0 and, by Assump-
tion 7.1.2,

—_

(7.7) n(s) = pr(C) =B _ 27" xP*(C) > 0.
k
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But if E,(Tp) < oo, then P, (Ty < 0o) = 1, and so in addition v(s) = P, (Tp <
o0) =P(T; —Ti—1 < o0) = 1.

Step 4: invariance of v. Using the definitions of v and P, and the fact
that v(s) = 1, one can show that ¥ = vP, which means that v/Z is an
invariant distribution of P. An argument by contradiction using Eq. (7.7)
shows that, in fact, v/Z = 7.

Step 5: finiteness of Tj. Now using Eq. (7.6) and the fact that 7 (s)v(A) =
v(s) = 1, we can conclude that

0= ]P’W(TO = OO) = /P[TO = 0 ‘ Xo = il}]ﬂ'(da))

Therefore, for some set S with 7(S) = 1, we must have P[Tp = oo | Xo =
xz]=0forxeS.

Step 6: final result. Let i(k) := max{i € N : T; < k} denote the
number of recurrences after the first up to time k. Putting everything
together, it follows from the strong LLN for i.i.d. sequences that 7x(¢) :=

Zl.l(k) Zz(fl) Ci(¢) “3 7(¢). However, 7y (¢) differs from the quantity of interest,

() == ¢ z];:_& #(Xy), in two ways. First, the normalization in the latter
equal the number of terms while it is equal to the expected number of terms
in the former. This can be dealt with in the limit since Zi(k)/k 3 1. Second,
#1(¢) contains the terms k! ZeTi1 #(Xy) and k1 ZIZ:TM) ¢(Xy). However,
these two terms are asymptotically negligible because of the finiteness of Tj
and Ty — k < Ti)+1 — Ti(r), which we have shown is finite with probability
1.

Exercise 7.2.1 (Conditional marginal distributions of the extended
Markov chain). Verify (a) Eq. (7.1) and (b) Eq. (7.2).

Exercise 7.2.2 (Expectation of a single block). Verify the final equality
in Bq. (7.4), that {31 6(X1)} = [ o(x)v(dz).

Exercise 7.2.3 (Marginal distribution of Yy). Verify Eq. (7.5).
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Exercise 7.2.4 (v is an invariant measure). Verify that v = vP. [Hint:
use the fact that

v(A) = p(A) + ) _(nP*)P(A)
k=0

and recognize that the right-hand side can be rewritten using v.]




Chapter 8

Lyapunov Functions

With Applications to the Geometric Ergodicity of Markov
Chains

8.1 Geometric Ergodicity

Chapter 7 concerns conditions under which the Markov chain “time average”

%Z?;& #(X) converges to the desired “space average” [ ¢(x)m(dx), where
7 is the invariant distribution of the Markov chain. In this chapter we explore
a complementary perspective: characterizing the speed of convergence of the
marginal distribution of X to m. Returning to the theme of Chapter 5, we
will require a notion of distance between distributions. In keeping with our
desire to estimate expectations, we first define a class of functions of interest
whose growth is measured relative to a “scaling” function.

Definition 8.1.1 (V-norm). Given a function V : A — Ry, the V-norm
of a function ¢ : A — R is defined as

g @]
9|y == SUD )

Then, we define the distance between two distributions as the maximum

difference in the expectations among all functions with V-norm bounded by
1.

Definition 8.1.2. The V-total variational distance between probability

108
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measures v1 and vy 1S given by

dy(vi,v2) = sup  |v1(¢) — va(d)].
¢ A—=R
st ||ollv<1

We will show exponential convergence is this distance under a quantitative
version of Assumption 7.1.2 involving V', which in this context is usually
called a Lyapunov function.

Assumption 8.1.3. There exists a Lyapunov function V : A — R satisfy-
ing the following properties:

1. There exist constants a € (0,1) and K > 0 such that, for all x € A,

(PV)(x) —V(x) < —aV(z) + K.

2. There exists a constant R > 2K /a such that C :={x € A : V(x) < R}
s a small set.

We can interpret the first part of the assumption as requiring the expected
value of V to decrease after the Markov chain transitions, at least when
V(x) satisfies —aV(x) + K < 0; that is, when V(x) > K/a. This latter
condition leads to the second part of the assumption requiring that the small

set contain all € A such that V(x) is smaller than twice the critical value
K/a.

Theorem 8.1.4 (Geometric ergodicity). If Assumption 8.1.3 holds, then P
admits a unique invariant distribution w and there exists a constant B > 0
such that for K := max(1, K),

- 2K
p = 1—,8m1n{1/2,;24_4}_{} S (O, 1),

and any probability measure v,

(8.1) dy (vP* ) < Bp*dy (v, ).

A Markov chain satisfying inequality Eq. (8.1) is said to be geometrically
ergodic.
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Remark 8.1.5. How p depends on the constants involved in Assump-
tion 8.1.3 makes some intuitive sense. The rate of convergence can be
faster if B, which measures the “uniformity” of the transition probabilities
in the small set, is large. On the other hand, it will also be faster as (i)
the convergence rate constant a increases, (ii) the “relazation” constant K
decreases, and (1ii) the size of the small set, as measured by R, increases.

Remark 8.1.6. Note that Assumption 8.1.8 implies Assumption 7.1.2. It
follows from an induction that

k—1
(P*V)(z) < (1 —a)*V () + KZ(l —a)f < (1-a)*V(z) + K/a.
/=0

Hence, as long as V(x) < oo, for k(x) sufficiently large, (P*®V)(x) <
R. But then P*®)(x,C) > 0 since V(x) > R for x ¢ C. Of course,
Theorem 8.1.4 guarantees the existence of the invariant distribution. Thus,
if Assumption 8.1.3 holds then Theorem 7.1.4 holds as well.

Remark 8.1.7. In the setting of Chapter 4, let P, denote the denote the
transition kernel for the kth iteration of SGD and let V(z) = ||z — =3
Using the Markov property, we can write Ex_q(Ey) = PV (xr—1). Therefore,
we can rewrite the conclusion of Lemma 4.5.5 as

PpV(2) < {1 = 2np(1 — L)}V (2) + 20307,

In other words, under the hypotheses of Lemma 4.5.5, Py satisfies Assump-
tion 8.1.3(1) with a = 2ngpu(l — L) and K = 2nio*. However we should
not expect it to satisfy Assumption 8.1.3(2): due to the discrete nature of
the SGD noise, usually the support of Py(x,-) and Py(y,-) will be disjoint
for x # y, hence a small set does not exist.

Example 8.1.8 (Geometric ergodicity of the Gaussian AR(1) process).
Consider the univariate version of the Gaussian AR(1) process from Exam-
ple 3.3.3 given by

X = aXp_1 + &,

where €, i N(0,02). Let f denote the density of €, and choose V(x) =
1/f(bx) for a constant b > 0 to be determined later. We have

27TU2 a2b2:2
g

PV(@) = [ o= aa)/ fom)ay =\ 2205 5705
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We want the exponential to grow more slowly then V (), so set b*> = 1—a?/s >
0 for some s < 1. Hence, a?/(1 —b?) = (s — 1) + 1, so0
b2(175)z2

e 20‘3

V1—b2

We must now determine how large x must be to ensure the term multiplying
V(z) is less than some fized v € (0,1). So, solving

PV(z) = V(x).

_ b2(lfs);u2
e 20%

- <
V1 — b2 =7

for 2% we obtain

2 1-b2
x2 > x2 — %'
- (1—s)b?

Thus, if 22 > 22, then PV (z) < 4V (z), while if x* < x2, then

V(z) ( 1 >
PViz) —==<YW(@)+ | ——= — 7| V(z4).
(@) € AT < W)+ (g =) Vi)
We can now conclude that Assumption 8.1.3(1) holds with a =1 — v and
K = (ﬁ — )V (zy). Since the set C = {z € R : V(z) < R} is in the
form of an interval and f is continuous and everywhere positive, it follows
from Example 7.1.3 that Assumption 8.1.3(2) holds as well.

Remark 8.1.9. Recall from Exzample 3.3.3 that the invariant distribution

of the Gaussian AR(1) process is m = N (0, %) So, V() o hy(x)~° for
some § < 1. This behavior for the Lyapunov function is quite common. It
is also essentially the “best case scenario” since, if V(x) o< hy(x)~t, then

(V) = oo, which contradicts Theorem 8.1.4.

8.2 Geometric Ergodicity of the Random-walk
Metropolis—Hastings Algorithm

The conditions required for MCMC algorithms to be ergodic in the sense
of Theorem 7.1.4 are quite weak. Exercise 7.1.1 provides one illustrative
example, where all that is required in the case of the random-walk MH
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algorithm (Example 6.3.3) is that the target density is continuous. The
conditions for geometric ergodicity are substantially stronger. To get a
sense of how much stronger, we continue to focus on the random-walk MH
algorithm. The following, very restricted result, is representative.

Proposition 8.2.1. For A =R, and hy(z) = \"'e™*, the random-walk
MH algorithm satisfies Assumption 8.1.3 if qo is continuous and everywhere
positive.

Proof. For some 6 € (0,1), let V(z) = e** o hy(x)~% For 2 > 0, we have

V) = [Vt - nar+ [ V@ - 0

e /OO{ D fante - v

where the first integral is for the case when the proposal is less than x, in
which case it is accepted, the second (third) integral is for the case when the
proposal is greater than = and accepted (rejected). Making the change of
variable y <— 2x — y and using the symmetry of qg, the first integral can be
rewritten as f;m V(2z — y)qo(x — y)dy. Thus,

(PV)@) < [ 1)t - )

where, letting z =y — x,

I(a.9) = V(2r —y) + 17 e

1 -
BV + v {1- Y
_ edk(?x—y) + eA(x—y)-i—tD\y + eéAx(I N e/\(:c—y))

— Oz {e—d)\z Le0-DXz g e—Az}

— O {2 (1= DAy efAZ)}

Hence, for any z* > 0 and € := (1 — eO=DA")(1 — ¢=2%"),

>
(o) < 2V (x) fory > x
(2—€e)V(z) fory>az+ 2"
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Since 6 < 1, we know that € € (0,1) and since ¢p is symmetric, positive, and
continuous, p* := Zof qo(y)dy < 1/2. Thus, we conclude that

(e 9]

oz — y)dy + 2 — V() / w0l — y)dy

r+z*

T4z*

(PV)(x) < QV(J:)/

T

— (1- V().

where €* = 2ep* < 1. Thus, Assumption 8.1.3(1) is satisfied with a = €* and
K = 0. Moreover, one can check that [0, R] is a small set for any R > 0, so
Assumption 8.1.3(2) is satisfied as well. O

Focusing on the case of A = R for simplicity, the above logic can be general-
ized to any target distribution satisfying the following condition.

Assumption 8.2.2 (Log-concavity in the tails). A density f is said to
log-concave in the tails if there exists A > 0 and some x* > 0 such that
forally >z > z*,

log f(x) —log f(y) > Ay — )

and fory < x < —z*,
log f(x) —log f(y) = A(z — y).

Essentially, log-concavity in the tails corresponds to the tails of the den-
sity smoothly decaying at least as quickly as the exponential e **|, hence
generalizing the case considered above.

Theorem 8.2.3. Assume h; > 0 is continuous and log-concave in the tails.
If hy is symmetric, then the random-walk MH algorithm with continuous
qo > 0 satisfies Assumption 8.1.83 with V(z) = e’** for any 6 € (0,1). If
hr is not symmetric, then the same conclusion holds if for some b > 0,
qo(x) < be= ol

Interestingly, a near converse also holds.

Theorem 8.2.4. Assume hy > 0 is continuous and [ |z|qo(z)dz < co. If

the random-walk MH algorithm is geometrically ergodic, then there exists
A > 0 such that [ hy(z)eM*ldz < oo.

In other words, geometric ergodicity of the random-walk MH algorithm
implies that the tails of the target density must decay at least exponentially
fast.
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8.3 Proof of General Geometric Ergodicity Condi-
tion*

To prove Theorem 8.1.4, we will rely on a clever trick that is frequently
useful. The idea is to work with a different, specially tailored distance that is
equivalent to the original distance, in the sense that the ratio of the distances
is uniformly bounded away from zero and infinity.

Definition 8.3.1. Distances d and d' on a set S are equivalent if there
exist finite constants 0 < ¢, < ¢* < o0 such that for all s,t € S,

cid (s,1) < d(s,t) < c*d'(s,t).

We will work with a family of equivalent distances parameterized by a positive
constant o > 0, which is used to define a modified V-norm:

s 2@

19llvio = 00 T oV ay

dve(vi,ve) = sup  [v1(d) — va(d)].
¢:l¢llv,e<1

Of course if 0 = 1 then |||y, = ||¢]|v and dy, = dy.

Lemma 8.3.2. The distances dy,, and dy are equivalent.

Exercise 8.3.1 (V-norm equivalence). Prove Lemma 8.3.2. [Hint:
consider the cases of 0 <1 and o > 1 separately.]

We will prove the following result, which will imply Theorem 8.1.4.

Theorem 8.3.3. If Assumption 8.1.3 holds, then there ezists p € (0,1) and
o > 0 such that for any probability measures vy and vs,

(8.2) dVJ(VlP, I/QP) S pdv7g(l/1, VQ).

Moreover, Eq. (8.2) implies that P admits a unique invariant distribution m
satisfying w(V) < oo.
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Exercise 8.3.2 (Exponential convergence of modified distance implies
geometric ergodicity). Show that Theorem 8.3.3 implies Theorem 8.1.4.

Before proving Theorem 8.3.3, we construct another distance that is almost
equal to dy,,(v1,12):

- [p(x) — P(y)|
0V = 0 V(@) + oV (a)
Ty
dve(vi,10) = sup  |vi(¢) — va(e)]-
o ||9llv,e, L <1

Lemma 8.3.4. The identity ||¢[|v,s,L = infeer [|¢ + c|lv,c holds, so in par-
ticular dy o (v1,12) = dv,o(v1, 12).

Proof. To prove the identity, we first observe that for r(x) := I Jlrd;(a)(ly) and
w(zx) = m, we have
B l9(x) — o(y)|
19llv.oL = oyed 2+ 0V(z)+oV(y)
Ay
< sup lp(x)] + |o(y)]
wyed2+oV(z)+aV(y)
z#yY
B w(y)r(z) + w(x)r(y)
= sup
z,ycA w(w) + w<y)
< sup ar(z) + (1 —a)r(y)

z,yceA,ac(0,1]

sup 7(x) = [[¢]|v.
zeA

Therefore, we have ||¢||v.o,r. = |0+ c|lve,r < ||¢+c||v and hence ||¢]|v,o,r, <
infc.er ”¢+C”V'

Now we show the reverse inequality. Since for a > 0, ||ad||v+ = a||¢||v,, and
lag|lve,r. = all¢||v,e L, without loss of generality assume that ||¢|v,, = 1.
Hence, ¢(z) < 6(y)] + |6(x) — [6(y)] < [6(y)] +2+ oV (x) + oV (y), which

we can rewrite at

1+oV(z)—¢(x) < —1—-0V(y) —|o(y)l
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From this inequality and the fact that V(y) and |¢(x)| are nonnegative and
finite, it follows that ¢* := infyc 4 1+ oV (x) — |¢(x)| is bounded from below
and thus |c¢*| < co. Next, note that

d(x)+c" <opx)+1+oV(x)—p(x)=1+0cV(x)
and, since ||¢||v.e,r = 1,
¢(xz) +c* > inf ¢(z) +1+aV(y) — é(y)
yeA
> inf 1+ 0V (y) = |4llve,c{2+ oV (x) + oV (y)}
yeA
—{1+oV(x)}.

Hence |¢(x) + ¢*| < 1+ oV (x) and

: |p(x) + ¢ |p(x )+C|
f = inf <
inf I+ cllvy = inf sup 77750 < sub ) S

confirming that [[¢[lv,s,, = infecr [|¢ + ¢flv. This identity implies {¢ :

”¢HV70'7L < 1} = {¢+ c: H¢HV,O' < 17C € R}7 S0 dV,O'(VhVQ) = dV,U(VhVQ)'
OJ

Proof of Theorem 8.3.3. It | Pé||v,o.r. < pl|@||v,o,L, the result will follow from
Lemma 8.3.4 and the bound

dye(1P,voP) = sup /gb )(v1P)(dx) /(;S ) (2 P)(dx)
¢:]1¢llv,e<1

" it o [ = [ foeru i

— s / (P) (@) (dz) — / (Po) (@) (dz)

6 6llvo<1
S%:ui“iq/ ¢(@)vi(dzx) — / é(x)vy(da)

= pdv,e(v1,v2).

We will fix a test function ¢ that, without loss of generality, satisfies
|6llv.e,. = 1. By Lemma 8.3.4, without loss of generality we can assume
|¢llv,e =1 (by possibly replacing ¢ by ¢ + ¢). Moreover, in this case we can
rewrite the conclusion of the theorem as requiring that, for all x,y € A,

(8.3) [Po(x) — Po(y)| < p{2+ 0V (x) +oV(y)}.
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Therefore, we turn to proving Eq. (8.3). Clearly the inequality holds if = y,
so assume x # y. We divide the verification of Eq. (8.3) into two cases
depending on the value of V(x) + V (y).

Case 1: V(z)+V(y) > R. In this case we essentially rely on the contraction
property from Assumption 8.1.3(1). We have the bound

[Po(x) — Po(y)| < Plol(x) + Plo|(y)

%) P(1+oV)(z)+ P(1+0V)(y)
=2+ 0PV (x)+oPV(y)
(id)

< 2409V (x)+ovyV(y) + 20K,

where (i) follows from having ||¢||v,.r < 1 and (éi) follows from Assump-
tion 8.1.3(1). Let 49 € (7,1) be a constant to be determined shortly and
rewrite the final bound as

2+ 0V () + 0%V (y) — oo —V(x) — (o —7)V(y) + 20K
<2+ o0vV(x)+ovwV(y) —o(yw—7)R+ 20K,
where we have used the fact that V(x) + V(y) > R. Now, to obtain the
desired upper bound, we first choose 7y such that —o(yo — )R + 20K = 0,

which leads to v9 = v+ 2K/R. Note that vy < 1 since R > 2K /(1 — ). For
some 71 € (70, 1), we now rewrite the upper bound again as

24+ ovV(x) + oV (y)
=7{2+oV(x)+oV(y)}+2(1 =) —o(n —){V(z)+ V(y)}
()

and choose v; such that (x) < 0. Since V(x) + V(y) > R, it suffices
to choose 7 such that 2(1 — 1) — o(y1 — )R = 0, which yields ~; :=
(2+ 0Rv)/(2 4+ ocR). We are guaranteed that v; < 1 since 79 < 1 and,
moreover, 1 > o as long as o < 1. Hence, assuming o < 1, we conclude
that

|Pp(x) — Po(y)| < v1{2+ oV (x) + 0V (y)}.

Case 2: V(x)+ V(y) < R. In this case we must have x,y € C, so we will
rely on the small set assumption to ensure contractivity of the transition
kernel, as P(x,-) and P(y,-) must be somewhat the same. In particular, by
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Assumption 8.1.3, for all 2’ € C' and A € F, P(x', A) := P(x', A) — Bu(A) >
0. Hence,

[Po(x) — Po(y)|

IN

|Po(x) — Po(y)|
P(1+4oV)(x)+ P(1+cV)(y)

=2 2(1—f)+oPV(z)+ PV (y)
? 2(1 — B) + oPV(x) + PV (y)

(iii)
< 2(1—p) +yoV(x) +voV(y) + 20K,

—
~

—

where first the two steps follow as in Case 1, () follows from P(x, A) = 1,
(#1) follows from PV (x) < PV (x) since V is nonnegative, and (i) follows
from Assumption 8.1.3(1). Now we exploit our freedom to choose o, which
Wesettoazm<1,so
|Po(x) — Po(y)| < 2(1 = B/2) +yoV(x) + 0V (y)

< {2+ oV(z) +0V(y)},

where v = max(1 — 8/2,v) < 1. Since 71 > v > 7, Eq. (8.2) holds for
p =max(l — 3/2,1) < 1, which after simplification takes the form given in
Theorem 8.1.4.

The conclusion that the Markov chain admits a unique invariant distribution
follows from a simple but slightly technical argument. Essentially the results
follows by noting that the sequence of probability measures given by v :=
5xP" is a Cauchy sequence under the metric dy, since dy (v, Vgp11) <
pkdv,g(yl,éw) — 0 as k — oo. Since dy, is complete for the space of
probability measures for which integrating V' is finite, this implies that there
exists a distribution 7 such that dy (v, ) — 0 and 7(V) < oco. Thus,
Pr = limg_,00 Pvy = limg_yoo V41 = 7, sO 7 is an invariant distribution.
On the other hand, if there exists a second invariant distribution 7', then
dvo(m, ') = dyo(nP, 7' P) < pdy,(m,7'") so in fact dy,,(m, ") = 0. Thus,
the invariant distribution is unique. O

Exercise 8.3.3 (Value of B). Use your derivations from Exercises 8.5.1
and 8.3.2 to explicitly calculate the value of B.




Appendix A

Mathematical Background

A.1 [P Spaces and Inequalities
The final mathematical background we need relates to function spaces and
inequalities.

Definition A.1.1. Given a measure u and number p > 0, define the collec-
tion LP = LP(u) of functions ¢ : A — R having finite LP norm:

léllze == {u(|loP)}/P < .

The case of p = 2 is noteworthy as it generalizes the Euclidean norm. Letting
(¢,1) := p(¢y) denote the inner product, we have [|¢[|7. = (¢, ). The
following two results establish bounds on the LP norms of products and sums
of functions.

Lemma A.1.2 (Hélder and Cauchy—Schwarz inequalities). For all p,q,r > 0
satisfying 1/p+1/q =1/r,

le9llzr <lllzell¥llza.

In particular, takingp=q=2 andr =1,

(&, )] < Mol < @l 2]l 2

Lemma A.1.3 (Minkowski inequality). For allp > 1,

16+ ILe < 1L + 1DIIZs-

119
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Thus, LP norms satisfy a kind of generalized triangle inequality.

Often we wish to ensure a random variable is unlikely to be too large. The
major tool for doing so is the following;:

Lemma A.1.4 (Markov inequality). If X is a nonnegative random variable,
then for allt > 0,

P{X > tE(X)} <

1
%

Proof. Without loss of generality assume E(X) = 1, so

(X >t) <X
E{t1(X > t)} <E(X)
tP(X >1t) <1

O]

We can always apply the Markov inequality to nonnegative ¢(X) for arbitrary
X. For example, if ¢(X) = (X — E{X})?2, then we obtain the Chebyshev
inequality
Var(X)

g2

P{|X —EX| > ¢} <

using the substitution &2 = ¢ Var(X):

. P{X—EX)? > 2} < Y

P{(X —EX)?> tVar(X)} < %

g2
A.2 Linear Algebra and Vector Calculus

For column vectors u,v € RP| let (u,v) == u'v = Zi’;l u;v; denote the
Euclidean inner product and |july := (u,u)'/? = (Zi’il u?)'/? denote
the Euclidean (l3) norm. A matrix A € RP*D is symmetricif A= AT.
A symmetric matrix A € RP*P is positive definite (pd) if

(A1) u'Au>0 forall w € RP\ {0},

which we denote by A > 0. It is positive semidefinite (psd) if Eq. (A.1)
holds with a > rather than a >, which we denote by A > 0. More generally,
we write A = B if A — B > 0 and similarly for ».
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Any psd matrix A induces an inner product (u,v) 4 := u' Av and associated

1/2
norm ||u| 4 := <u,u>A/ .

Lemma A.2.1 (Cauchy—Schwarz inequality for vectors). For any psd matriz
matriz A € RP*P and vectors u,v € RP,

(u,v)a < [Juallv]|a-

Define the spectral norm of a matrix A € RP'*D by

Ax
Al = sup 1Az,
zcrP\(0} |zl

So, by construction |[|Ax|2 < ||All2|lz|2. Moreover, for matrices A and B,
if AB is well-defined, then ||[ABl|2 < ||A|l2]| B2

Definition A.2.2 (Orthonormal matrix). A matric Q@ € RP*P s or-
thonormal if Q'Q = QQ " = I, so in particular Q' = Q.

Theorem A.2.3 (Spectral theorem). Any symmetric matriv A € RP*P

can be written as A = QAQ", where Q is orthonormal and A is diagonal.

Proposition A.2.4. A symmetric matric A € RP*P s positive definite

(positive semidefinite) if and only if Ay >0 (A >0) for alli=1,...,D.

Proposition A.2.5. For any matricr A € RD/XD, the matric AAT =
QAQ" is positive semidefinite and || Allz = mauxiAV2

(23

Definition A.2.6 (Gradient and Hessian). For a function ¢ : RP — R, the
gradient V¢ : RP? — RP is defined as Vo(x); := g—i(w) and the Hessian
V2¢ : RP — RP*D is defined as V2¢(z); = %;;j(w). We will also use
the shorthands ¢' := V¢ and ¢ = V?¢.
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