Jonathan H. Huggins

Contact Information	655 Huntington Avenue Building 2 Boston, MA 02115 USA	×	jhuggins -at- mit -dot- jhhuggins.org	edu	
Research Interests	large-scale learning, inference algorithms for rich model classes (e.g., Bayesian nonparametric models, probabilistic program), interface between learning and inference.				
Education	 Massachusetts Institute of Technology, Cambridge, MA USA Ph.D., Computer Science, June 2018 Dissertation topic: Scaling Bayesian Inference: Theoretical Foundations and Practical Methods Advisor: Tamara Broderick S.M., Computer Science, June 2014 (GPA: 5.00) Advisor: Joshua B. Tenenbaum Selected coursework: Advanced Algorithms, Probability Theory, Inference and Information Theory 				
	 Columbia University, Columbia College, New York, NY USA B.A., Mathematics, May 2012 (GPA: 4.04) Research Advisors: Liam Paninski and Frank D. Wood Selected coursework: Machine Learning, Computational Learning Theory, Probability Theory, Real Analysis, Graph Theory 				
Grants, Honors, and Awards	ISBA@NIPS travel award (2016) DoD National Defense Science and Engineering Graduate Fellowship (2013-2015) NSF Graduate Research Fellowship (2013) (declined for DoD NDSEG) Hertz Fellowship Finalist (2013) Summa Cum Laude, Columbia University (2012) Phi Beta Kappa (2011) Rabi Scholar, Columbia College (2008-2012) Intel Science Talent Search Finalist (2008)				
Academic Experience	Harvard University, Cambridge MA USA				
	Postdoctoral Research Fellow Department of Biostatistics, T.H.	Char	n School of Public Health	March 2018 - present	
	Massachusetts Institute of Technology, Cambridge, MA USA				
	Graduate Student Department of EECS and Compu	ter So	Septer cience and Artificial Intelligen	mber 2012 - February 2018 ace Laboratory	
	Teaching AssistantSeptember 2016 - May 2017Held office hours, conducted recitation sessions, graded homework, and advised students on classprojects for graduate-level machine learning courses (6.862 and 6.867).				
	Microsoft Research New England, Cambridge, MA USA				
	Research Intern			June 2017 - August 2017	

Research topic: Random feature Stein discrepancies (advisor: Lester Mackey).

Undergraduate Researcher	June 2011 - May 2012
Conducted independent research in statistics for neuroscience (adv	visor: Liam Paninski) and Bayesian
nonparametric modeling (advisor: Frank Wood).	

Columbia University, Columbia College, New York, NY USA

Teaching Assistant June 2011 - May 2012 Duties included office hours and grading of homework for introductory statistics and data structures courses.

PREPRINTS • J. H. Huggins^{*} & L. Mackey^{*}. Random feature Stein discrepancies. Under review. [pdf]

• J. H. Huggins, T. C. Campbell, M. Kasprzak & T. Broderick. Scalable Gaussian process inference with finite-data mean and variance guarantees. *Under review*. [pdf]

• R. Agrawal, T. C. Campbell, J. H. Huggins & T. Broderick. Data-dependent compression of random features for large-scale kernel approximation. *Under review*.

PUBLICATIONS 13. T. C. Campbell^{*}, J. H. Huggins^{*}, J. P. How & T. Broderick (To appear). Truncated Random Measures. *Bernoulli*. [pdf]

12. J. H. Huggins^{*} & D. M. Roy^{*} (To appear). Sequential Monte Carlo as approximate sampling: bounds, adaptive resampling via ∞ -ESS, and an application to particle Gibbs. *Bernoulli*. [pdf]

11. J. H. Huggins, R. P. Adams & T. Broderick (2017). PASS-GLM: polynomial approximate sufficient statistics for scalable Bayesian GLM inference. In *Proc. of Advances in Neural Information Processing Systems*. [pdf]

 \triangleright Selected for spotlight presentation (top 22% of accepted papers)

10. J. H. Huggins^{*} & J. Zou^{*} (2017). Quantifying the Accuracy of Approximate Diffusions and Markov Chains. In Proc. of the 19th International Conference on Artificial Intelligence and Statistics. [pdf]

9. J. H. Huggins, T. C. Campbell & T. Broderick (2016). Coresets for Scalable Bayesian Logistic Regression. In *Proc. of Advances in Neural Information Processing Systems*. [pdf]

8. J. H. Huggins & J. B. Tenenbaum (2015). Risk and Regret of Hierarchical Bayesian Learners. In *Proc. of the 32nd International Conference on Machine Learning*. [pdf]

7. J. H. Huggins^{*}, A. Saeedi^{*}, K. Narasimhan^{*} & V. K. Mansinghka (2015). JUMP-Means: Small-Variance Asymptotics for Markov Jump Processes. In *Proc. of the 32nd International Conference* on Machine Learning. [pdf]

6. J. H. Huggins & C. Rudin (2014). A statistical learning theory framework for supervised pattern discovery. In *Proc. of SIAM International Conference on Data Mining*. [pdf]

5. A. Pakman, J. H. Huggins, C. Smith & L. Paninski (2014). Fast state-space methods for inferring dendritic synaptic connectivity. *Journal of Computational Neuroscience* 36(3), 415-443. [pdf]

4. E. Pnevmatikakis, K. Rahnama Rad, J. H. Huggins & L. Paninski (2014). Fast low-SNR Kalman filtering and forward-backward smoothing via a low-rank perturbative approach. *Journal of Computational and Graphical Statistics* 23(2), 316-339. [pdf]

Professional Experience	Google Inc., New York, NY USAMay 2012 -Summer Engineering InternMay 2012 -Developed, created, and deployed a language-model based "gibberish detector" for	August, 2012 identifying short			
	 Conference Reviewer: Advances in Neural Information Processing Systems, 2011-present International Conference on Machine Learning, 2015-present Artificial Intelligence and Statistics, 2016-present 				
Professional Service	Journal Reviewer: • PLoS One • Journal of Machine Learning Research				
	BNP 2017 (contributed talk) Truncated Random Measures	June 2017			
	Raytheon BBN Technologies Scaling Bayesian Inference: Theoretical Foundations and Practical Methods	February 2018			
	Schlumberger Doll Research Scaling Bayesian Inference by Constructing Approximating Exponential Families	April 2018			
	Boston Bayesian Meetup Scaling Bayesian Inference by Constructing Approximating Exponential Families	April 2018			
	SPA 2018 Finite-dimensional Approximations of Completely Random Measures	June 2018			
	Previous				
	ISBA World Meeting (contributed session) Scaling Bayesian inference using exponential family approximations	June 2018			
TALKS	Upcoming				
	1. J. H. Huggins & F. Wood (2014). Infinite structured hidden semi-Markov models. $[stat.\overline{ME}].~[pdf]$	arXiv:1407.0044			
Unpublished Work	2. J. H. Huggins, A. Saeedi & M. J. Johnson (2014). Detailed Derivations of Small-variance Asymptotics for some Hierarchical Bayesian Nonparametric Models. <i>arXiv:1501.00052</i> [stat.ML]. [pdf]				
	$\star = $ contributed equally				
	1. M. Vilain, J. H. Huggins & B. Wellner (2009). A simple feature-copying approach dependencies. In <i>Proc. of the 13th Conference on Computational Natural Language</i> [pdf]	to long-distance e Learning 2009.			
	2. M. Vilain, J. H. Huggins & B. Wellner (2009). Sources of performance in CRF transfer training: a business name-tagging case study. In <i>Proc. of Recent Advances in Natural Language Processing</i> 2009. [pdf]				
	3. J. H. Huggins & L. Paninski (2012). Optimal experimental design for samp dendritic trees in the low-SNR regime. <i>Journal of Computational Neuroscience</i> 32(pling voltage on 2), 347-66. [pdf]			

text sequences as nonsensical.

\mathbf{MITRE} Corp., Bedford, MA USA

Technical Co-op

May 2007 - August 2009

Worked with multiple teams on natural language processing problems such as co-reference finding, action recognition in free text, and named entity recognition. Projects were implemented in OCaml, Python, and Perl and used techniques such as integer linear programming and conditional random fields.