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Abstract Due to the limitations of current voltage sens-
ing techniques, optimal filtering of noisy, undersampled
voltage signals on dendritic trees is a key problem in
computational cellular neuroscience. These limitations
lead to voltage data that is incomplete (in the sense of
only capturing a small portion of the full spatiotem-
poral signal) and often highly noisy. In this paper we
use a Kalman filtering framework to develop optimal
experimental design methods for voltage sampling. Our
approach is to use a simple greedy algorithm with lazy
evaluation to minimize the expected square error of
the estimated spatiotemporal voltage signal. We take
advantage of some particular features of the dendritic
filtering problem to efficiently calculate the Kalman
estimator’s covariance. We test our framework with
simulations of real dendritic branching structures and
compare the quality of both time-invariant and time-
varying sampling schemes. While the benefit of using
the experimental design methods was modest in the
time-invariant case, improvements of 25–100% over
more naïve methods were found when the observation
locations were allowed to change with time. We also
present a heuristic approximation to the greedy algo-
rithm that is an order of magnitude faster while still
providing comparable results.
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1 Introduction

Understanding dendritic computation remains one of
the principal open problems in cellular and computa-
tional neuroscience (Stuart et al. 1999; Spruston 2008;
Sjostrom et al. 2008). The key challenge is the difficulty
of recording physiological signals (particularly voltage)
with sufficient spatiotemporal resolution on the den-
dritic tree. If we have the full spatiotemporal voltage
signal then it is possible to use straightforward statis-
tical methods to infer many biophysical quantities of
interest (Morse et al. 2001; Wood et al. 2004; Huys
et al. 2006), such as passive cable parameters, active
properties, and in some cases even time-varying in-
formation, such as the rate of synaptic input. Unfor-
tunately, technical challenges limit multiple-electrode
recordings from dendrites to only a few electrodes,
typically targeted far from the tips of dendritic branches
(Stuart and Sakmann 1994; Cox and Griffith 2001;
Cox and Raol 2004; Bell and Craciun 2005; Petrusca
et al. 2007; Nevian et al. 2007; Homma et al. 2009).
High-resolution two-photon imaging techniques pro-
vide more spatially-complete observations, but with
significantly lower signal-to-noise (Djurisic et al. 2008;
Homma et al. 2009; Canepari et al. 2010, 2011). In par-
ticular, high-resolution random-access voltage imag-
ing techniques—for example, those based on acousto-
optic deflection (AOD) (Vucinic and Sejnowski 2007;
Reddy et al. 2008; Grewe and Helmchen 2009; Grewe
et al. 2010)—have the potential to achieve kilohertz
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recording rates in three dimensions. In this paper we
focus on techniques applicable to this random-access,
low-SNR case.

The technical limitations of current voltage measure-
ment technologies lead to two sources of difficulty:
1) voltage data is incomplete (in the sense of only cap-
turing a small portion of the full spatiotemporal signal)
and 2) such data is available only in limited quantities
for a single neuron (for example, in many cases only
relatively short recording durations are possible due
to photodamage). Statistical techniques offer a path to
partially offset these difficulties by providing methods
to de-noise the data and infer the voltage in unobserved
compartments while also maximizing the amount of
information that can be extracted from the data that
can be gathered with currently available methods. As
discussed in previous work (Huys and Paninski 2009;
Paninski 2010), state-space filtering methods such as
the Kalman filter are an attractive choice for addressing
these concerns because they allow us to explicitly in-
corporate the known biophysics of dendritic dynamics,
along with the known noise properties of the measure-
ment device.

In addition to providing a method for estimating
the spatio-temporal dendritic voltage given limited ob-
servations, the Kalman filter offers a framework for
addressing the second difficulty: namely, that only lim-
ited spatial voltage data can be collected from a single
neuron. We can make each measurement as informa-
tive as possible by developing an optimal experimental
design (Federov 1972; Chaloner and Verdinelli 1995;
Krause et al. 2008b; Lewi et al. 2009; Seeger 2009). Op-
timal experimental design requires solving two prob-
lems in a computationally efficient manner. First, we
must evaluate the quality of a given proposed design.
Second, we must efficiently search over a large space
of candidate designs. This paper proposes solutions to
both of these problems. To address the first problem
we present an efficient implementation of the Kalman
filter-smoother. For dendritic trees which have on the
order of N ∼ 104 compartments, the standard imple-
mentations of the Kalman filter-smoother are impracti-
cal because they require O(N3) time and O(N2) space.
We therefore extend the results of Paninski (2010) to
approximately calculate the filter-smoother estimator
covariance matrix as a low rank perturbation to the
steady-state (zero-SNR) solution in O(N) time and
space. Using these computed covariance matrices we
can easily calculate the expected mean-squared error,
the mutual information, and other design metrics. To
efficiently search the space of possible designs, we
utilized “lazy greedy” methods from the literature
on submodular optimization (Nemhauser et al. 1978;

Krause et al. 2007, 2008b; Das and Kempe 2008).
These lazy evaluation methods proved critical to mak-
ing the optimization tractable. We also present an even
faster heuristic approximation to the full greedy algo-
rithm that gives comparable performance in the case
of both time-stationary and time-varying sampling
schemes.

We begin in Section 2 below by discussing the for-
mulation of the Kalman filter for our task and outlining
the derivation of the fast backward smoother. Next we
discuss our approach to optimal experimental design in
Section 3. In Section 4 we present our results, includ-
ing the effectiveness of our greedily selected sampling
schemes in both time variant and invariant cases on
a number of neuronal geometries. Conclusions and
possible directions for future research are considered
in Section 5.

2 Fast computation of objective functions for
experimental design

When taking voltage measurements on a dendritic tree
using, for example, laser-based scanning techniques
(Vucinic and Sejnowski 2007; Grewe and Helmchen
2009), there is flexibility in designing a sampling
scheme. If an experimentalist knows beforehand that
the data will be processed using a Kalman filter, then
we can exploit this fact to select observation locations
so that the filter will be able to recover as much in-
formation as possible from those observations. A rea-
sonable choice for an objective function is the weighted
mean squared error (MSE) of the estimated spatiotem-
poral voltage, which is equivalent to the weighted
sum of the variances of the smoothed mean μs

t =
E(Vt|Y1:T):

υw(O) =
T∑

t=0

N∑

i=1

w(i, t)[Cs
t ]ii, (1)

where T is the number of time steps in the observation
sequence, N is the number of compartments in the
dendritic tree, w(i, t) is the weight on compartment
i at time t (i.e., w(i, t) can be chosen to reflect the
importance of compartment i to the experimenter),
Cs

t = Cov(Vt|Y1:T) is the optimal estimator covariance
matrix at time t, and O is the set of selected sample
locations. Thus, the diagonal of Cs

t represents the un-
certainty in our predicted voltages at time t given all
the observed data; this quantity will play a central role
in our analysis, as discussed in more detail below.
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The MSE is not the only possible metric for ex-
perimental design based on Cs

t . Instead of minimizing
the summed MSE, we could minimize the maximum
weighted MSE summed over all time points:

T∑

t=0

max
i∈{1...N}

w(i, t)[Cs
t ]ii,

or just the maximum weighted MSE:

max
i,t

w(i, t)[Cs
t ]ii;

see, e.g., Krause et al. (2007) for additional discus-
sion of this minimax approach. A third possibility is
to maximize the mutual information I(V1:T; Y1:T) be-
tween the true underlying voltages V and the observed
data Y (Cover and Thomas 1991). In the Kalman
setting, it turns out that this mutual information may
be computed efficiently via a forward-backward filter-
smoother approach (see Appendix for details).

Thus, whatever our choice of objective function,
we need to compute quantities related to the filter-
smoother estimator covariance Cs

t . Our first task, there-
fore, is to develop efficient methods for calculating this
quantity.

2.1 The fast low-SNR Kalman filter-smoother

Our analysis is based on a simple linear-Gaussian
(Kalman) model for the noisy dynamics of the dendritic
voltage and the observed data. This Kalman model
serves as crude approximation, of course, but it is a
reasonable starting point, particularly for subthreshold
passive dynamics; see Huys and Paninski (2009) for
more detailed background and discussion. In the state
space voltage filtering formulation of the Kalman filter,
the hidden state vectors Vt are the true voltages. If we
discretize the tree into N compartments then Vt has
dimensionality N. For the dynamics and observation
equations we take

Vt+dt = AVt + εt, εt ∼ N (0, σ 2dtI) (2)

yt = BtVt + ηt, ηt ∼ N (0, Wt). (3)

Here A is an N × N matrix that implements the
backward-Euler implementation of the cable equation
(see below), εt denotes a Gaussian noise source that

perturbs the cable equation stochastically on each time
step, and N (μ, C) denotes a Gaussian density of mean
μ and covariance C. The vectors yt are the measure-
ments on the dendritic tree, Bt is a matrix that specifies
how the observations are related instantaneously to the
voltage vector, and the covariance matrix Wt defines
the noisiness of those observations. A single non-zero
entry (set to unity) in column i of a row of Bt indicates
that an observation was made in the i-th compartment
at time t. Additional non-zero terms in the column
introduce a blurring effect into the measurement. Thus,
each observation in the set O from Eq. (1) corresponds
to a row of Bt, along with the corresponding elements
of the covariance matrix Wt. Note that we will only
consider temporally uncorrelated noise here, though
generalizations are possible (Paninski 2010).

We define A using a backward Euler (implicit)
discretization for the cable equation, as discussed in
Paninski (2010): in the noiseless case,

Vt+dt(x) = Vt(x) + dt

⎛

⎝−gxVt+dt(x)

+
∑

w∈N(x)

axw

[
Vt+dt(w) − Vt+dt(x)

]
⎞

⎠ . (4)

where Vt(x) denotes the voltage in compartment x at
time t, gx is the membrane conductance in compartment
x, N(x) is the set of compartments adjoining x, and
axw is the intercompartmental conductance between
compartments x and w. We use the implicit time dis-
cretization because it is well-known that the forward
Euler method (not described here) for solving the cable
equation is unstable for large values of adt (Hines 1984;
Press et al. 1992). Writing the cable equation in matrix-
vector form gives

Vt+dt = Vt + KVt+dt

for an appropriate matrix K of “Hines” form (Hines
1984); rearranging slightly gives

Vt+dt = (I − K)−1Vt.

It is straightforward to replace A in Eq. (2) with
(I − K)−1.

It is worth noting explicitly here that we will as-
sume that all of the parameters mentioned above are
known, or more generally, that they can be estimated
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experimentally in an on-line manner (i.e., while the
preparation is still stable). Thus we will assume that
the anatomical structure of the neuron (encapsulated
by the connectivity graph N(x)) can be measured at the
beginning of the experiment, and that reasonable es-
timates of the biophysical parameters gx, axw, Wt, etc.,
may be obtained either a priori or via a version of the
expectation-maximization approach discussed in Huys
and Paninski (2009). In practice, we found that the
exact values of these parameters, taken over a biophys-
ically reasonable range, did not meaningfully impact
the output of the optimal designs computed below. We
acknowledge that on-line reconstruction of dendritic
trees remains a challenging task; however, significant
research into automated dendrite reconstruction meth-
ods is underway. For example, the powerful TREES
MATLAB toolbox was recently introduced for exactly
this type of task (Cuntz et al. 2010). Similarly, Losavio
et al. (2008) demonstrate excellent qualitative and
quantitative performance using their ORION software
for fully automatic morphological reconstruction. In
addition, competitions such as the Digital Reconstruc-
tion of Axonal and Dendritic Morphology (DIADEM)
Challenge1 continue to encourage research in this area.

Now that the model has been specified, we may de-
rive an efficient smoothed backward Kalman recursion
using methods similar to those employed by Paninski
(2010) for the forward Kalman recursion. We assume
that the forward mean

μ
f
t = E(Vt|Y1:t)

and covariance

C f
t = Cov(Vt|Y1:t)

(where Y1:t denotes all of the observed data {ys} up to
time t) have already been computed by such methods.
(Note that the forward recursion alone is insufficient to
compute the MSE, which is a function of Cs

t and there-
fore of the observation times and locations both before
and after the current time t.) In particular, we assume
C f

t has been approximated as a low rank perturbation
to the steady state covariance matrix C0, in the form

C f
t ≈ C0 + Ut DtU T

t , (5)

where Dt is an n × n matrix with n � N and Ut DtU T
t is

a low-rank matrix.

1http://www.diademchallenge.org/

The equilibrium covariance C0 can be computed
from the forward Kalman recursion for the covariance
matrix (Durbin and Koopman 2001),

C f
t =

[
(AC f

t−dt AT + σ 2dtI)−1 + BT
t W−1

t Bt

]−1
, (6)

by taking the zero-SNR steady state limit (i.e., where
Bt = 0 and Ct = Ct−dt), which satisfies the discrete
Lyapunov equation

AC0 AT + σ 2dtI = C0. (7)

In this case the equation has the explicit geometric
series solution (Brockwell and Davis 1991)

C0 = σ 2dt
∞∑

i=0

A2i = σ 2dt
(
I − A2

)−1
, (8)

since A is symmetric and stable (i.e., all eigenvalues
are less than 1). See Paninski (2010) for details on
calculating C f

t and efficiently multiplying by C0 and
C−1

0 without having to represent these large matrices
explicitly. In short, we can take advantage of the fact
that the matrix K that implements the backward Euler
propagation is symmetric and tree-tridiagonal (also
known as “Hines” form (Hines 1984)): all off-diagonal
elements Kxw are zero unless the compartments x and
w are nearest neighbors on the dendritic tree. We
can then use efficient sparse matrix divide methods to
multiply by (I − K)−1.

Before proceeding, let us describe an intuitive jus-
tification for the low rank approximation (Eq. (5)). If
we make k observations at t = 1 then, by an application
of the Woodbury matrix lemma to Eq. (6), Eq. (5) holds
exactly with U1 having rank k. If we make no further
observations (Bt = 0 for all t > 1), then C f

t follows the
update rule

C f
t = AC f

t−1 AT + σ 2dtI

= A[C0 + Ut−1 Dt−1U T
t−1]AT + σ 2dtI

= C0 + AUt−1 Dt−1Ut−1Ut−1 AT ,

where the third equality follows from Eq. (7). Iterating
the equation gives

C f
t = C0 + At−sUs DsU T

s (At−s)T ,

where s denotes the time of the last observation. Since
A is stable, the second term will decay exponentially;
thus, for t − s sufficiently large, we can discard some
dimensions of the perturbation AUt−1 Dt−1Ut−1Ut−1 AT

without experiencing much error in C f
t . In the case that

additional observations become available with each
time step t, a similar phenomenon governs the behavior
of C f

t : long-ago observations are eventually forgotten,

http://www.diademchallenge.org/
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due to the exponential decay caused by the double
multiplication AC f

t AT . See Paninski (2010), Paninski
et al. (2011) for further empirical justification that the
error introduced by the low-rank approximation is, in
fact, small.

Now, to calculate the low-rank approximation for
the smoother, we repeatedly express portions of
the classical recursion for the smoothed covariance
(Shumway and Stoffer 2006)

Cs
t = C f

t + C f
t AT [

C (Vt+1|Y1:t)
]−1

× [
Cs

t+1 − C (Vt+1|Y1:t)
] [

C (Vt+1|Y1:t)
]−1

AC f
t

in low rank form or, in the final step, as a low rank
correction to the steady state covariance matrix,

Cs
t ≈ C0 + PtGt PT

t ,

which is justified by the same logic as the forward case.
This approximation allows us to calculate Cs

t in O(N)

time and space instead of the O(N3) time and O(N2)

space required by standard implementations. However,
some O(n3) and O(nN) operations remain, where n is
the rank of the correction term Pt above; as motivated
above, this is roughly proportional to the number of
observations per time step, scaled by the observation
SNR. (Indeed, an operational definition of the “low-
SNR” regime here is that n � N, in which case the
approximate filter discussed here is qualitatively more
efficient than the standard implementation.) See Ap-
pendix A for the full derivation, and Paninski et al.
(2011) for further discussion.

It is important to recall that in the linear-Gaussian
case considered here, the posterior covariances Cs

t do
not depend on the observed data yt. Thus, once we
know the system parameters (A, Wt, and Bt) we can
optimize the experimental design without having to up-
date our designs “on the fly” as we observe new data yt;
as discussed recently in, e.g., Lewi et al. (2009), this on-
line experimental design optimization is considerably
more computationally challenging than the problem we
will focus on here.

In the case that Bt is time-invariant (stationary),
there is a further speed-up that can be applied: the for-
ward recursion C f

t will converge to a limit, after which
we no longer need to compute Ut and Dt. Specifically,
we stop recomputing Ut and Dt after some time tconv,
when the instantaneous rate of change of Dt drops
below some threshold τ :

‖diag(D f
t−dt) − diag(Dt)‖ < τ,

where ‖v‖ is the 2-norm of the vector v. A similar
procedure can be used to check for the convergence
of Cs

t , significantly speeding up the backward compu-
tation. This idea may also be applied in the case of
periodically-varying observations Bt, though we have
not pursued this direction in depth.

3 Selecting observation locations via submodular
optimization methods

In this paper we will focus on using the weighted vari-
ance (Eq. (1)) to optimize the sampling scheme. For the
sake of clarity we limit our discussion to the unweighted
case,

w(i, t) = 1 ∀i, t,

for the moment. All the results in this section can
be extended to the weighted case in a straightforward
manner. Our objective function therefore has the sim-
pler form

υ(O) =
T∑

t=0

N∑

i=1

[Cs
t ]ii.

Selecting the optimal set of observations O is NP-
hard in general (Das and Kempe 2008; Krause et al.
2008a), and therefore we must rely on approximate
methods to design an optimal sampling scheme. There
is a significant body of work on maximizing objec-
tive functions that are submodular (see, e.g., Krause
et al. 2008b and references therein). Submodularity is
a diminishing returns property: the more observations
added, the smaller the increase achieved by each ad-
ditional observation. Let S be the set of observations
from which to choose. Formally, some real-valued func-
tion F(·) is submodular if for A ⊆ B ⊆ S and e ∈ S\B, it
holds that F(A ∪ {e}) − F(A) ≥ F(B ∪ {e}) − F(B). In
other words, including the element e in the argument
set O ⊆ S increases F(O) less as O becomes larger.
The advantage is that greedy methods, surprisingly,
are guaranteed to lead to fairly good optimizers of
submodular functions: specifically, greedy optimizers
perform within a constant factor of the best possible
optimizers (which will typically be exponentially more
difficult to compute; Nemhauser et al. 1978), as long as
the function is submodular and monotonic.

It can be shown (Krause and Guestrin 2005; Seeger
2009) that the mutual information I(V; Y) in our model
is submodular (considered as a function of subsets of
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the observation vector Y), as long as the noise covari-
ance matrices Wt are diagonal (i.e., the observations
are conditionally independent given V). This makes
intuitive sense: as more observations are added in this
setting, additional observations will contribute smaller
amounts of new information. Since the mutual infor-
mation and MSE are closely related in linear-Gaussian
models (the former involves the log-determinant of the
posterior covariance matrix, while the latter involves
the trace of the same matrix), it is reasonable to conjec-
ture that the following “variance reduction” function is
submodular:

ρ(O) = υ(∅) − υ(O)

=
T∑

t=0

N∑

i=1

([C0]ii − [Cs
t ]ii)

=
T∑

t=0

tr(C0 − Cs
t )

≈
T∑

t=0

tr(C0 − (C0 + PtGt PT
t ))

= −
T∑

t=0

tr(PtGt PT
t ), (9)

where tr(·) denotes the trace of its matrix argument
and we have taken advantage of the low rank approx-
imation of Cs

t to eliminate the need to calculate C0.2

Note in addition that this variance reduction function
is monotonically increasing: the more observations we
make, the smaller the posterior variance in this model.

As noted above, for any monotonically increasing
submodular function we can apply a simple greedy
algorithm to obtain the optimality guarantees of
Nemhauser et al. (1978) (cf. Krause et al. 2008b). Dur-
ing each iteration, the algorithm selects the observation
location that provides the greatest increase in the objec-
tive function. This greedy algorithm can be improved
by “lazily” re-evaluating only those elements with the
potential to maximize the greedy objective on any
iteration (Krause et al. 2008b). More specifically, let
F(·) be a submodular objective function. For iteration
i with established observation set Oi−1 and observation

2Given Pt and Gt, we can calculate Eq. (9) in O(NT) time,
because tr(PtGt PT

t ) can be computed in O(N) time:

tr(PtGt PT
t ) = tr(Lt LT

t ) = sum(sq(Lt)),

where Lt = PtG
1/2
t , sq(·) indicates squaring the argument

component-wise, and we take advantage of the fact that Gt is
n × n diagonal matrix with n � N.

location e j ∈ S, put δi, j = F(Oi−1 ∪ {e j}) − F(Oi−1) and
	i, j = maxl< j{δi,l}. In other words, δi, j is the increase in
F(·) if e j is chosen as the i-th observation and 	i, j is the
maximum such value for el examined before e j. Then on
iteration i + 1 calculate δi+1, j if and only if δi, j ≥ 	i+1, j

and otherwise put δi+1, j = δi, j. We do not always have
to calculate δi+1, j because, by the submodularity of F(·),
δi+1, j ≤ δi, j, so if δi, j ≤ 	i+1, j then δi+1, j ≤ 	i+1, j and we
can conclude a priori that e j will be discarded. In other
words, during each loop we keep track of the largest
improvement in the objective function we have found
so far. We only evaluate the objective value obtained
by adding some observation e j if the improvement we
calculated for that element previously is greater than
the largest improvement. This is because we know by
the submodularity of F(·) that the improvement we get
by adding e j to the observation set will never increase
when a different element is included, so there is no
possibility that it will be the best observation to select
during this iteration. This procedure greatly reduces
computation because for most e j the change in the ob-
jective will be lower than the maximum improvement,
so only a few e j have to be considered on each iteration.

While in many cases the variance reduction ρ(·)
defined above is submodular (Das and Kempe 2008;
Krause et al. 2008a), we found empirically that in our
case ρ(·) is not quite submodular (see Section 4.4 for
details). Nevertheless, the greedy algorithm (and the
lazy implementation) proved to be quite effective in
practice, as we will see below.3

3.1 Considerations when optimizing with
non-stationary observations

State-of-the-art laser-based dendritic voltage measure-
ment methods allow for time-varying sampling schemes
(c.f. Vucinic and Sejnowski 2007 and references in Sec-
tion 1). Conceptually, in the case of a time-stationary
observation scheme, we can view the observations as
almost simultaneous, in the sense that the microscope
scans the locations in O within some small time step
dt, then repeats the process T times. Alternatively,
it is straightforward to apply the greedy algorithm to
the case in which Bt is time-varying. Compared to the
stationary case, instead of only giving a spatial loca-
tion, each observation element of O has an additional

3Our implementation of the algorithm is based on A. Krause’s
Matlab Toolbox for Submodular Function Optimization (Krause
2010) (available at http://www.cs.caltech.edu/∼krausea/sfo/index
.html ).

http://www.cs.caltech.edu/$sim $krausea/sfo/index.html
http://www.cs.caltech.edu/$sim $krausea/sfo/index.html
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temporal component and instead of optimizing N spa-
tial locations, the algorithm optimizes over NT spatio-
temporal locations (T is again the number of time steps
in the observation sequence).

A slight modification to the greedy algorithm is nec-
essary, however. In general, we want to enforce a limit
of k observations at each time step because the mea-
surement apparatus is limited to some finite number
of (near) simultaneous observations. Therefore, after
the k-th observation has been selected by the algorithm
at time step t, the remaining observations at that time
should no longer be considered. An incidental benefit
of this constraint is that as the algorithm proceeds,
many potential observation elements are eliminated
from consideration, beyond those already eliminated
by implementing lazy evaluation, which further speeds
up the optimization. Empirically, we found the effect
was particularly strong because the greedy algorithm
tended to choose observations from the same time
step consecutively. The same time steps were chosen
because observations near t = T/2 provide the most
information since this choice maximizes the informa-
tion gained about past and future voltages; hence the
greedy algorithm tended to start with observations near
t = T/2 and work away from that time.

An additional speed-up—in the same spirit as the
convergence of Ct trick used in the stationary Bt case—
can be made to the Kalman filter in the case of time
varying observations. If we begin by making a single
observation at time t1 then we can begin the forward
recursion at that time and C f

t will converge to C0 at
some future time t f

1 . For the backward smoothing, Cs
t

will quickly converge, but will then need to be recalcu-
lated again beginning at t f

1 until it again converges for
some time ts

1 < t1. Once the greedy algorithm selects
the best observation location at some time t1, we can
continue to add new observations in a similar manner.
For some second observation at t2, there are three
cases. If t2 = t1 then we proceed exactly as before. If
t2 < t1 there are two subcases: if t f

2 < ts
1, then there is

no interaction between the two observations on the
forward and backward recursions. Otherwise t f

2 ≥ ts
1

and recalculation of the covariance matrices will be
required for times ts

2 < t < t f
1 . The t2 > t1 case is similar.

4 Results

We applied the optimization methods described above
to data simulated with two representative neuronal
geometries: a rabbit starburst amacrine cell (“THIN-
STAR”) and a rat hippocampal pyramidal cell

(“c73164”).4 For the dynamics Eq. (2) we set dt = 1
msec and σ 2 = 1; for the observation Eq. (3) Wt was
set to the identity matrix scaled by .005; for the cable
Eq. (4), ranges for the intercompartmental coupling
axw and the membrane conductance gx were based on
the geometry of the cell (including the compartment
lengths and diameters) and empirically derived values
for biophysical parameters (Koch 1999; Dayan and
Abbott 2001). The number of time steps T was set to 20.
The simulation parameters are summarized in Table 1.

We begin in Fig. 1 by examining the relative magni-
tudes of the prior variances (i.e., the diagonal elements
of the equilibrium covariance matrix C0). C0 can be
computed quite explicitly in the limit as dt → 0. We
define K′ = K/dt, so K′ does not have any dt depen-
dence. Using Eq. (8) and the substitution A = (I −
K)−1 = (I − dtK′)−1 gives

lim
dt→0

C0 = lim
dt→0

σ 2dt(I − (I − dtK′)−2)−1

= lim
dt→0

σ 2dt(−2dtK′ − 3dt2(K′)2)−1

= lim
dt→0

−σ 2(2K′ + 3dt(K′)2)−1

= −σ 2

2
(K′)−1, (10)

where the second line follows from taking the second
order Taylor approximation in dt. (K′)−1 in Eq. (10)
has a natural interpretation as the transfer impedance
matrix (Zador and Pearlmutter 1993). When we com-
pute C0 for the starburst amacrine and pyramidal cells
(Fig. 1), we find that the maximum variance was ap-
proximately 60% larger than the minimum variance.
The variance increases for compartments farther away
from the soma, so compartments near the tips of the
dendritic branches have significantly higher variance
than those close to the soma, with the greatest variance
at the ends of the tips.

Observing near the tips, therefore, has the potential
to provide the largest total variance reduction. This
is illustrated directly in Fig. 2, which shows the vari-
ances of a subtree of the pyramidal cell when zero,
one, two and three observations are made. Note how
the second observation, which is only two compart-
ments away from a tip, has the greatest effect, not
only reducing the variance of the observed compart-
ments but also significantly decreasing the variance

4Both geometries are available at http://neuromorpho.org
(Ascoli 2006).

http://neuromorpho.org
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Table 1 Simulation
parameters for Eqs. (2)–(4)

Parameter Description Value(s)

N Number of compartments 1419 (c73164) and
2133 (THINSTAR)

T Number of time steps 20
dt Time step length (in milliseconds) 1
Wt Scale of observation noise .005
axw Intercompartmental coupling 1250–5000 (c73164) and

1–4 × 105 (THINSTAR)
gx Membrane conductance 100

of neighboring compartments. This effect is less pro-
nounced in the observations farther away from a tip.
Figure 3 makes the pattern clear: the colors in each
compartment in the second panel indicate the total vari-
ance reduction produced by making a single observa-
tion at that compartment. The total variance reduction
is highest near, but not at, the tips (since by making
observations not quite at the tips we can decrease the
posterior variance of more compartments), so that is
where we would expect the greedy algorithm to favor
making observations. Figure 4 shows exactly this phe-
nomenon. It plots the first 100 locations chosen by the
lazy greedy algorithm for the starburst and pyramidal
geometries. The locations are colored in an effort to
indicate the order in which the locations were chosen by
the algorithm. Some observation clumping is noticeable
with the starburst amacrine cell. The clumping indicates

that, because of the low SNR setting, multiple samples
near the same location must be made in order for the
smoother to make accurate predictions.

Figure 3(b) shows that the greatest initial variance
reduction is produced by observations near the tips—
exactly the locations sampled by greedy algorithm, as
seen in Fig. 4. This observation motivated us to try
a heuristic approximation to the full greedy algorithm
using only these initial variance reductions. We were
further motivated by Fig. 2 (cf. Fig. 9), which shows
that observations only locally affect the variance of
compartments, so the initial variance reduction should
be a good approximation to the true variance reduction
even for later iterations of the algorithm. The heuristic
works as follows. First, calculate the initial variance
reduction for each possible observation site. (Naively,
this would take O(N2) time, since we need to compute
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Fig. 1 The relative magnitudes of the prior variance for two
neuronal geometries. The color of each compartment i indicates
the corresponding prior variance, [C0]ii. Moving away from the
soma, the variance increases. Thus, compartments near the tips
of the dendritic branches have significantly higher variance than
those close to the soma, with the greatest variance at the ends
of the tips. The variance is also lower near sections with many

branch points, a phenomenon particularly noticeable in the star-
burst amacrine cell. The neuronal geometry for panel (a) is taken
from the “THINSTAR” file (rabbit starburst amacrine cell); see
Bloomfield and Miller (1986) for details. The geometry for panel
(b) is taken from the “c73164” file (rat hippocampal pyramidal
cell); see Ishizuka et al. (1995) for details
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(d) variance after three observations

Fig. 2 Computing the variance reduction. (a) The prior variance
on a sub-branch; this is a zoomed-in view of Fig. 1(b). (b)–(d)
The posterior variance on the tree after one (b), two (c), and
three (d) observation sites are selected. Coloring and scale in all
subplots are as in Fig. 1(b). While each observation (the location
is indicated by an arrow) provides a reduction in the variance

in the observed compartment and its neighbors, the effect is
strongest near the second observation, which was made near a
dendritic tip. This result makes intuitive sense because the prior
variances of compartments near the tips are significantly higher
than those of other compartments

the reduction in variance at each compartment i, fol-
lowing an observation at each compartment j; however,
since each observation only affects a few neighboring
compartments, it is possible to perform this computa-
tion in just O(N) time. See Paninski et al. (2011) for
a more detailed discussion in a related application.)
Next, select observations in order of this initial variance
reduction (largest first), downweighting compartments
that are close to any compartments which have already
been selected (where the downweighting function at
compartment i is chosen to match the spatially local dip
in variance following an observation at i, as illustrated

in Fig. 2). This heuristic produced results that were
qualitatively identical to the original algorithm (Fig. 8),
with much better computational scaling, as discussed in
Section 4.3 below.

4.1 Including non-uniform weighting and variance
terms

In many cases it may be physiologically desirable to bias
the algorithm to favor observation locations closer to
the soma. We discussed optimization methods using the
weighted objective function Eq. (1); Fig. 6 illustrates
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Fig. 3 (a) The prior variances of each compartment in a sub-
tree of the pyramidal cell (cf. Fig. 1(b)). (b) The color in each
compartment indicates the total variance reduction produced by
making observations solely at that compartment. Compared with

the prior variances in (a), the maximum variance reductions are
not at the tips of the branches, but near the tips, since observing at
a tip effectively provides information about fewer compartments
than does observing near the tip

how an exponential weighting function might affect
the output of the greedy algorithm. The weighting is a
function of the distance d(i) along the tree between the
observation location i and the soma. The exponential
weighting term took the following form:

wexp(i) = wmin + (wmax − wmin) exp

(
−α

d(i)
dmax

)
, (11)

where wmax is the maximum weighting and wmin is a
lower bound on the weighting; dmax is the maximum
distance from the soma (75 for THINSTAR, 71 for
c73164); and α controls the strength of the bias toward
the soma. Similar results were observed for other (non-
exponential) weighting functions. Because there is an
implicit free scaling parameter we can parameterize
wmin and wmax by their ratio: wr ≡ wmax

wmin
. We tried a

variety of values for both wr and α and found that they
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Fig. 4 Sampling scheme generated by greedily selecting 100
observation locations. The colors—beginning with dark blue and
ending with dark red—indicate the order in which the locations

were selected by the greedy algorithm. Note that the algorithm
preferentially samples from the periphery of the dendritic tree,
as predicted by Fig. 3
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Fig. 5 First 100 observation locations selected by the greedy
algorithm when an exponential weighting term Eq. (11) is applied
to the variance reduction. For α = 4, the observation locations
are qualitatively similar to the unweighted case, except they tend
toward the soma a bit more. There is no longer any sampling
along the long branches reaching up into the upper lefthand
corner, yet there are also no observations very near the soma.

The trend continued for larger α values. For α = 10 there was a
growing bias toward the soma and locations very near the soma
were selected earlier. This trend of earlier selection suggests that
when fewer observations will be made a stronger weighting bias
would be necessary to induce the desired sampling locations.
Similar trends were found when wr was varied (data not shown)

had similar effects on the qualitative output. Thus, we
will restrict our discussion to the effect of α on the
results and fix wr = 10.

As expected, increasing α biased observations to-
ward clustering near the soma more. Yet even with α =
10 there are still many observations near the tips of the
dendrites (Fig. 5). As α increases the greedy algorithm
also tends to choose locations close to the soma earlier.
Weighting thus provides a flexible and effective way
to bias the sampling scheme toward the parts of the
dendrite that are of greatest interest. Figure 6 provides
some insight into this behavior: though the variances
of compartments near the soma are weighted much
more highly than those on the periphery, the relative
strength of the variance reduction near the periphery
still maintains a (weak) bias toward the periphery, even
for large values of the weighting strength α.

Many voltage imaging techniques make noisier mea-
surements near the tips of dendrites than near the
soma because of the reduction in dendrite circumfer-
ence as a function of distance from the soma, leading
to a reduction in SNR (which is proportional to the
membrane area within the image focus). We explored
this effect by varying the observation noise variance Wt

as a function of the distance from the soma. Figure 7
shows the results of a simulated experiment in which
Wt grows linearly with the distance from the soma. We

find that indeed, higher peripheral noise leads to more
samples at the soma. Somewhat more surprisingly, as
the ratio of the noise variance at the dendrite tips to
that at the soma increases, the optimized observation
locations begin to appear together, in a clumpy man-
ner. These results can be explained by the interaction
of two competing factors. First, as already discussed,
peripheral observations are the most informative, so
peripheral locations are preferred even if they have
slightly higher noise. However, because of the higher
noise, each observation provides much less informa-
tion, so multiple observations near the same location
are required to obtain a comparable SNR level. The
second factor is that higher noise at the periphery
leads to more observations near the soma. Eventually
the latter factor overwhelms the former as the ratio
between the noise and the soma and the periphery is
increased and all the observations clump around the
soma (as seen in Fig. 7). Also recall that these simula-
tions are performed in a low-SNR setting, where many
samples may be taken from the same location with
limited redundancy (since each observation provides
only a limited amount of information); in experiments
with higher SNR (i.e., smaller values of the observation
noise Wt), this clumping of the observation locations
was reduced (since in the higher-SNR setting, mul-
tiple observations from the same location provide
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Fig. 6 Top: exponentially weighted prior variance for two set-
tings of the bias term α from Eq. (11). Bottom: initial variance
reductions using exponential weighting for two settings of the
bias term α. The colorings are qualitatively very different from
the weighted variances shown in the top row. The differences

between the two figures indicate how much greater the variance
reduction near the periphery is compared to the reduction at the
soma, since it overwhelms the weighting function, even for a large
bias term

redundant information, and an optimal sampler will
prefer to observe many distinct locations instead of
sampling repeatedly from nearby locations; data not
shown).

4.2 Quantitative results

Figure 8 compares the performance of the greedy algo-
rithm against a baseline method for selecting observa-
tion locations (random location sampling) as well as the
heuristic approximation described previously. Other

methods such as selecting evenly spaced locations were
also tried, but produced results comparable to choosing
locations randomly, so we have not included them in
our results. The variance reductions for the random
method were averaged over 15 trials, so error bars are
included for those results.

For the starburst geometry, improvements over ran-
domly selected and evenly spaced locations ranged
from 60% for small k ∼ 10 (recall that k denotes the
number of observations per time step) to 30% for large
k ∼ 100. For the pyramidal geometry, improvements
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(a) max/min noise ratio 2:1 (b) max/min noise ratio 5:1

(c) max/min noise ratio 10:1 (d) max/min noise ratio 25:1

Fig. 7 100 observation locations selected by the greedy algorithm
when the observation noise varied linearly with the distance of
the compartment from the soma. The non-constant noise leads to
clumping in the observation selection scheme. For smaller ratios

the need for multiple observations near the same point due to
increased noise produces adjacent observations on the periphery.
As the ratio increases the higher noise levels on the periphery
pushes the observations towards the soma

ranged from almost 100% to 55% over a similar
range of k values. Based on the results of the greedy
optimization—namely, that locations on the periphery
were heavily favored for sampling—we decided to com-
pare the performance of the greedy algorithm to the
method of observing a random sample of the tips of the
branches. The greedy algorithm was only 8% better for
small k and negligibly better for larger k. Of course,
sampling at the tips will no longer be optimal in the
case of strongly varying weights or noise variances, as
discussed in the preceding section; both the full greedy
method and the faster heuristic are sufficiently general
to cover these cases.

As expected based on the qualitatively similar out-
puts of the two algorithms, the heuristic performed
as well as, and even slightly better than, the original
greedy algorithm, suggesting that the original intuitions
that motivated the heuristic were well-founded. These
intuitions extend to the time-varying case, as seen in
Fig. 9, which shows that the effect of each observation
is local both in space and in time. Thus, it was natural
to implement a non-stationary heuristic approximation
along exactly the same lines as the stationary heuristic
we have already described. The resulting nonstationary
heuristic algorithm outperformed the stationary ver-
sions of both the greedy and heuristic algorithms, and
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Fig. 8 Graph of the variance reduction vs. number of observa-
tions for the four observation location selection methods and
two neuronal geometries. The black line is based on observations
selected by the greedy algorithm. The blue line is for the time-
stationary version of the heuristic that uses the variance reduc-
tions produced by the first iteration of the algorithm. The green
line is the average of 15 trials of randomly selected observations

at the tips of the dendritic branches. The magenta line is the
average of 15 versions in which the observations were chosen
at random; error bars indicate ± one standard deviation. The
heuristic effectively reproduced the results of the full greedy
algorithm at much lower computational cost due to the local
effect of observations on the variance

was much faster than the full greedy method in the
nonstationary case, as we discuss further below.

While the greedy algorithm led to relatively mi-
nor improvements over naïve methods in the time-
stationary setting, larger improvements were visible

in the non-stationary sampling case (Fig. 10). For
THINSTAR (c73164), the non-stationary version had
variance reductions 15–40% (60–90%) higher than
the stationary version and 25–40% (30–90%) higher
than non-stationary naïve methods. However, because
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Fig. 9 Illustration of non-stationary sampling. We sampled
sparsely in time at the three compartments that were observed
in Fig. 3: we sampled just at one time point in two compart-
ments and twice in the other. (a) The variance reduction in each
compartment over time caused by taking the four samples. The

observation from compartment 29, which is near a tip, has a
significantly larger effect than the other three observations, as
we have seen in the preceding figures illustrating the stationary
sampler. (b) The posterior variance of each compartment after
sampling
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Fig. 10 Comparison of the variance reduction produced by using
the full and heuristic greedy optimizations, with and without
time variation in the sampling scheme, compared against random
sampling. Allowing for non-stationary observations increased
performance over the stationary case by 60–90% for c73164 and
15–40% for THINSTAR (data not shown), with larger benefits
for smaller numbers of observations. While the non-stationary
optimization using the full greedy was an order of magnitude
slower, the non-stationary heuristic version still ran in under an
hour, even for 100 observations per time step (data not shown
here) and performed as well as the full greedy method

allowing time-varying Bt slows the optimization, we
only ran the algorithm for k up to 15 (still with T = 20).
This shortcoming does not extend to the non-stationary
heuristic, which performed as well as the non-stationary
full greedy algorithm but was scalable up to k � 10.

4.3 Computational requirements

Using lazy evaluation in the greedy algorithm proved
to be crucial to making the optimization tractable. For
THINSTAR, for example, after the initial iteration,
when all N = 2133 compartments must be evaluated,
each subsequent time step had on average lazy 28 eval-
uations while the non-lazy version requires 2134 − i on
the i-th iteration, an improvement of about two orders
of magnitude. The benefit is even greater than these
numbers indicate, since the cost per evaluation for the
first iteration is much less than for later iterations.
This is because, while the bottleneck on the number of
compartments N has been removed by using a low rank
correction to calculate Cs

t , some O(n3) and O(nN) op-
erations remain, where n is proportional to the number
of observations that are made at each time step. Thus,
the true speed-up is closer to three orders of magnitude.
Without lazy evaluation the greedy algorithm would be
far too slow to be practical.

The cubic scaling of the computation time as a
function of the number of observations k proved to
be problematic for larger values of k. For k = 10 the
runtime was 10 minutes and for k = 30 the runtime was
1.5 hours, while for k = 100 the runtime jumped to al-
most 2 days. If time-varying observation schemes were
allowed a more severe version of the same trend was
observed. For k = 10 the runtime was about the same as
for the time-invariant case, but jumped to 20 hours for
k = 30. (All timing experiments used the THINSTAR
neuronal geometry and were run in MATLAB on
Linux machines, each with 2 2.66 GHz Quad-Core Intel
Xeon processors and 16 GB RAM.) The time varying
implementation probably remains impractical without
either an efficient parallelized implementation (which,
it is worth noting, should be fairly straightforward
here—since we can easily evaluate each of the top 32
experimental designs in parallel, for example—though
we have not yet explored this direction systematically),
or spatial downsampling or model reduction techniques
such as those explored in Kellems et al. (2009).

These computational limitations are all overcome
by using the heuristic approximation, which scales as
O(N), as discussed above; furthermore, parallelization
techniques can also be applied easily to the heuris-
tic method, since the initial variance reductions can
be trivially evaluated in parallel. Thus we conclude
that the heuristic algorithm provides a stable and fast
method for computing good sampling designs, both in
the stationary and non-stationary settings.

4.4 Non-submodularity of the variance reduction

Empirically we found that ρ(·) is not quite submodu-
lar. To see this, consider the sequence ρ = (ρ1, ρ2, . . .)

of the best variance reductions calculated by the lazy
greedy algorithm for increasing k values and define the
difference function on a vector v = (v1, v2, v3, . . .) as

	v = (v2 − v1, v3 − v2, v4 − v3, . . .).

Then a necessary (but not sufficient) condition for ρ(·)
to be submodular is that all elements of the second
order difference, 	2ρ := 		ρ, are non-positive. That
is, each observation we add should provide a smaller
increase in ρ(·) than the previous observation. For the
starburst geometry we found that this condition only
held 60% of the time (although it always held for the
pyramidal geometry). However, if we relax the condi-
tion to allow slight violations, it held 85% of the time.
Specifically, instead of requiring 	2ρ ≤ 0, we permit
	2ρ/	ρ ≤ .1, where division and comparison are done
component-wise. That is, we ignore increases in the rate
of variance reduction decrease that are less than 10% of
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the current rate of decrease. This analysis suggests that
most of the submodularity violations are fairly small.

Recall that the validity of lazy evaluation is contin-
gent upon the submodularity of the objective function.
If the objective function is not submodular then using
lazy evaluation could decrease the quality of the op-
timization. We ran the greedy algorithm without lazy
evaluation and found that the decrease in performance
was negligible, costing less than 1% for the starburst
geometry and less than .01% for the pyramidal geome-
try (in both cases for 1 ≤ k ≤ 30, where k is the number
of observations per time step).

5 Conclusion

We have presented a state-space filter framework for
efficiently inferring and smoothing voltage measure-
ments across large dendritic trees and for designing
optimal voltage sampling schemes. This work extends
(Paninski 2010), which considered only the forward
dendritic Kalman filter and did not explore experimen-
tal design issues. Our low-rank perturbation methods
allow for efficient computation of the smoothed covari-
ance, which can be used to calculate a number of mea-
sures of experimental optimality. We have shown how
to design an optimal sampling scheme using one such
metric, the variance reduction, via a greedy algorithm
with lazy evaluation.

Somewhat surprisingly, in the simplest case of
spatially-constant noise, variance weighting, and sta-
tionary observation sets, the optimal greedy algorithm
can be well-approximated by a much simpler algorithm
in which we randomly select observations from the tips
of the dendrites (Fig. 8). More generally, a heuristic
approximation to the greedy algorithm which uses only
the first iteration of the variance reductions performs as
well as the full greedy approach, due to the local effects
of each observation. This heuristic produces an order
of magnitude speed increase, making the proposed
methods potentially tractable in experimental settings
in which dendritic reconstructions may be obtained in
living preparations (Losavio et al. 2008; Cuntz et al.
2010).

Because we rely on the steady-state covariance C0,
our procedure is so far limited to the case of time-
invariant dynamics. In addition, we have assumed that
both dynamics and observation noise in the dendrite is
Gaussian. Generalizations of all of these assumptions
seem feasible. For example, extended Kalman filter or
hybrid particle filter methods (Doucet et al. 2001) may
be applicable to the case of active dendritic membranes

(Huys and Paninski 2009), where the dynamics depend
strongly on the recent voltage history. Non-Gaussian
observation noise could in some cases be handled us-
ing the Laplace approximation methods discussed in
Paninski et al. (2010). A final promising direction is to
consider banded approximations of Ct (Pnevmatikakis
et al. 2011), instead of the low-rank approximation
we have exploited here; such a banded approximation
would be appropriate whenever both the dynamics and
observation matrices are sparse and local, and may be
applied even in the context of high-SNR observations
of a time-varying dynamics model.
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Appendix A: Derivation of the fast backward
Kalman smoother

We will derive a procedure for efficiently calculating
the smoothed covariance Cs

t = Cov(Vt|Y1:T) and mean
μs

t = E(Vt|Y1:T) in O(N) time, where N is the number
of dendritic compartments. We will follow the same
general strategy as Paninski (2010). As with the forward
covariance, our goal is to express the smoothed covari-
ance as a low-rank perturbation to C0 of the form

Cs
t ≈ C0 + PtGt PT

t .

In general, the smoothed covariance is described by the
backwards recursion (Shumway and Stoffer 2006)

Cs
t = C f

t + Jt[Cs
t+1 − C(Vt+1|Y1:t)]JT

t , (12)

where

Jt = C f
t AT [C(Vt+1|Y1:t)]−1

= C f
t AT(AC f

t AT + σ 2dtI)−1

= C f
t AT(A(C0 + Ut DtU T

t )AT + σ 2dtI)−1

= C f
t AT(C0 + AUt DtU T

t AT)−1

= C f
t AT(C−1

0 − C−1
0 AUt([Dt]−1

+ U T
t ATC−1

0 AU T
t )−1U T

t ATC−1
0 )

= C f
t AT(C−1

0 − Rt Qt RT
t ), (13)
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and where we have used the fact that C0 = AC0 AT +
σ 2dtI to obtain the fourth line and the Woodbury
lemma to obtain the fifth line, then abbreviated

Rt = C−1
0 AUt

and

Qt = (D f−1
t + U T

t ATC−1
0 AU T

t )−1.

As in the Ut DtU T
t case, Qt is small and Rt Qt RT

t is low-
rank, so both matrices can be manipulated efficiently.

First we must re-express Cs
t+1 − C(Vt+1|Y1:t) from

Eq. (12) as a low-rank matrix of the form Wt HtWT
t :

Cs
t+1 − C(Vt+1|Y1:t)

= Cs
t+1 − (AC f

t AT + σ 2dtI)

= Cs
t+1 − (A(C0 + Ut DtU T

t )AT + σ 2dtI)

= C0 + Pt+1Gt+1 PT
t+1 − C0 − AUt DtU T

t AT

= Pt+1Gt+1 PT
t+1 − AUt DtU T

t AT .

In order to express Pt+1Gt+1 PT
t+1 − AUt DtU T

t AT as a
single low rank matrix, we choose an orthogonal basis
for the two matrices

Wt = orth([Pt+1 AUt])

and write

Cs
t+1 − C(Vt+1|Y1:t) = Pt+1Gt+1 PT

t+1 − AUt DtU T
t AT

= Wt HtWT
t , (14)

where

Ht = WT
t Pt+1Gt+1 PT

t+1Wt − WT
t AUt DtU T

t AT Wt.

Our next task is to expand the second term in
Eq. (12) and use orthogonalization to condense the
resulting sum of low rank matrices. Generally suppress-
ing time variation for notational clarity, substituting
Eqs. (5), (13), and (14) into Eq. (12) gives

Cs
t = C f

t + Jt[Cs
t+1 − C(Vt+1|Y1:t)]JT

t

= C f
t + (C0 + U DU T)AT(C−1

0 − RQRT)W HWT

×(C−1
0 − RQRT)A(C0 + U DU T). (15)

Expanding the inner part of the second term on the
right hand side gives

(C−1
0 − RQR)W HWT(C−1

0 − RQR)

= (C−1
0 + L)X(C−1

0 + L)

= C−1
0 XC−1

0 + LXL + C−1
0 XL + LXC−1

0 ,

where we abbreviate

L = −RQRT

and

X = W HWT .

As above we can choose an orthogonal basis for the
four low rank matrices (C−1

0 XC−1
0 + · · · + LXC−1

0 ),
making sure to orthogonalize “thin" matrices so the
computation is efficient,

O1 = orth([C−1
0 W R]),

and write

C−1
0 XC−1

0 + LXL + C−1
0 XL + LXC−1

0 = O1 M1 OT
1 .

Now we can substitute the condensed inner term

(C−1
0 − RQR)W HWT(C−1

0 − RQR) = O1 M1 OT
1

back into Eq. (15) and expand to get

Cs
t = C f

t + (C0 + U DU T)AT(O1 M1 OT
1 )A

×(C0 + U DU T)

= C f
t + (C0 + �)AT�A(C0 + �)

= C0 + � + �AT�AC0 + C0 AT�A�

+�AT�A� + C0 AT�AC0,

abbreviating

� = U DU T

and

� = O1 M1 OT
1 .

Again, we can find an orthogonal basis O2 for the
sum of low rank matrices � + · · · + C0 AT�AC0 and
express Cs

t in the form C0 + O2 M2 OT
2 , where

O2 = orth([U C0 AT O1])
and

M2 = OT
2 (� + �AT�AC0 + C0 AT�A�

+�AT�A� + C0 AT�AC0)O2.
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We obtain P and G by truncating O2 M2 OT
2 in order to

control its rank. In Matlab we would do

[P′, G′] = svd(O2 M1/2
2 , ‘econ’),

then choose P as the first n columns of P′ and G as
the square of the first n diagonal elements of G′. We
determine n by capturing some large proportion c of
the variance in O2 M2 OT

2 . That is, n is the least solution
of the inequality

∑

i≤n

G2
ii ≥ c

∑

i

G2
ii.

The proportion c was typically 0.99 or greater in the
experiments described here. The exact value does not
measurably impact the experimental results. To see
why the SVD of O2 M1/2

2 allows us to reconstruct
O2 M2 OT

2 , consider that the SVD produces:

O2 M1/2
2 = P′G′ X ′,

where G′ is diagonal and P′ and X ′ are orthogonal.
Thus,

O2 M2 OT
2 = (O2 M1/2

2 )(O2 M1/2
2 )T

= (P′G′ X)(P′G′ X ′)T

= P′G′ X ′ X ′T G′ P′T

= P′(G′)2 P′T

since X ′ is orthogonal.
At this point computing the backwards recursion for

the smoothed mean is straightforward (Shumway and
Stoffer 2006):

μs
t = μ

f
t + Jt(μ

s
t+1 − Aμ

f
t )

= μ
f
t + (C f

t AT(C−1
0 + L))(μs

t+1 − Aμ
f
t )

= μ
f
t + ((C0 + �)AT(C−1

0 + L))(μs
t+1 − Aμ

f
t )

= μ
f
t + (AT + �ATC−1

0 + C0 AT L + �AT L)

×(μs
t+1 − Aμ

f
t )

Note that the base case of the recursion is

μs
T = μ

f
T and Cs

T = C f
T

so

PT = UT and GT = DT .

Appendix B: Efficient computation of the
mutual information

Here we briefly sketch the computation of the mutual
information I(V1:T; Y1:T), which can be written as usual
in terms of a difference between prior and conditional
entropies,

I(V; Y) = H(V) − H(V|Y).

While we have not explored this objective function
in depth in this work, as noted in the main text the
information comes equipped with an attractive sub-
modularity property in the important special case that
all of the observations are conditionally independent of
V. Thus it may be useful to explore this and alternate
objective functions in the future, and so we provide a
brief discussion of this function here, for completeness.

Because we are only interested in relative changes
in I(V; Y), we can ignore the prior entropy H(V) term
(which does not depend on the observations Y, or on
the chosen observation sequence O). To calculate the
conditional entropy H(V|Y) recall that that p(V|Y)

is Gaussian (since p(V) is Gaussian and p(Y|V) is
linear-Gaussian), and therefore H(V|Y) reduces to
the computation of the determinant of the conditional
covariance matrix Cov(V1:T |Y1:T). Note that this is
not the same as the smoothed covariance matrix Cs

t ,
which is of dimension N × N; Cov(V1:T |Y1:T) has di-
mension NT × NT, and contains the smoothed co-
variance matrices Cs

t along its block-diagonal. While
efficient algorithms are available for the computation
of |Cov(V1:T |Y1:T)| (exploiting the fact that the inverse
of this matrix has a convenient block-tridiagonal form
(Paninski et al. 2010)), it is slightly easier to sidestep
this issue by using the identity

log p(Y) = log
∫

p(V, Y)dV

= log p(V̂) + log p(Y|V̂)

+1

2
log |Cov(V|Y)| + const.

for the marginal likelihood p(Y) of any observed data
sequence Y in this Gaussian model; here V̂ abbreviates
the conditional expectation V̂ = E(V1:T |Y1:T), which
may be computed efficiently using the recursion de-
scribed in the preceding section. Once we have V̂, we
can simply plug in to compute log p(V̂) and log p(Y|V̂).
Finally, p(Y) = ∫

p(VT , Y1:T)dVT may be computed
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using the standard forward recursion for the Kalman
filter, interpreted as a Gaussian hidden Markov model
(Rabiner 1989), which in turn may be implemented
here in a straightforward and efficient manner exploit-
ing the low-rank nature of the forward covariances C f

t .
Once all of these pieces are computed, we may use
the above equation to obtain the determinant term
|Cov(V1:T |Y1:T)|, and therefore compute the objective
function I(V; Y).
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