
Provably Learning Mixtures of Gaussians and More

Jonathan Huggins
jhh2143@columbia.edu

1 Introduction

Given a random sample, how can one accurately estimate the parameters of the probabilistic
model that generated the data? This is a fundamental question in statistical inference and,
more recently, in machine learning. One of the most widely studied instances of this problem
is estimating the parameters of a mixture of Gaussians, since doing so is of fundamental
importance in a wide range of subjects, from physics to social science. The classic, and
most popular approach, for learning Gaussian mixture models (GMMs) is the EM algorithm
[Dempster et al., 1977]. The EM algorithm is a search heuristic over the parameters that
finds a local maximum of the likelihood function, and therefore makes no guarantees that it
will converge to an estimate that is close to the true parameters. Furthermore, in practice it
has been found to converge very slowly.

In light of the lack for performance guarantees for learning GMMs, Dasgupta [1999] instigated
over a decade of work by the theoretical computer science community on provably recovering,
with high probability, good estimates of GMM parameters in polynomial time and sample
size. A range of special cases—such as requiring spherical Gaussians, separation conditions
on the parameters, or a shared covariance matrix—were tackled first. But recently, Belkin
and Sinha [2010b] and Moitra and Valiant [2010] showed it was possible to learn any GMM,
with no separation or covariance conditions.

Most of the techniques that have been developed, and all those that we will discuss in detail,
rely on projecting the data onto some subspace with dimension polynomial in the number
of mixture components. The mixture components are learned in that subspace, then the
GMM parameters in the original high-dimensional space is reconstructed. At a high level,
the goal with this approach is to project the data in such a way that data points generated
from different components are separated in some formal sense. What is meant by separation
depends on the details of the algorithm. There are a number of approaches to projecting: for
example, Dasgupta [1999] and others project the data onto random subspaces while Vempala
and Wang [2002] introduced spectral techniques — that is, using singular value decomposition
(SVD) to project deterministically onto the principal components. Methods that project onto
many subspaces attempt to ensure either that some “best” subspace can be chosen or that
most of the subspaces will be “good” in some sense.

Before delving into the details of provably learning mixture models, we briefly outline what
is to come. In Section 2, we present some important basic definitions and formally define the
problem of learning a GMM. Important conceptual considerations when trying to learn high-

1

dimensional Gaussian distributions are also discussed. Next, a generic projection approach
to learning GMM parameters is sketched and a few of the results which will not be discussed
in detail are reviewed in Section 3. In Section 4, we give a more detailed analysis of spectral
techniques, including their limitations and benefits, while attempting to highlight the more
generally applicable theorems and strategies. In Section 5, we discuss the recent state-of-the-
art projection-based techniques [Belkin and Sinha, 2010b, Moitra and Valiant, 2010], which
are capable of learning arbitrary mixtures. Finally, in Section 6, we conclude with some
remarks and possible directions for further research.

2 Preliminaries

We are interested in recovering GMM parameters when given access to a sequence of i.i.d. draws
generated by an oracle. Formally, a Gaussian mixture model is a convex combination of k
different n-dimensional Gaussians with weights wi ∈ [0, 1], means µi ∈ Rn and covariance
matrices Σi ∈ Rn×n (so the weights must sum to 1:

∑k
i=1wi = 1). Let Fi = N (µi,Σi) denote

the distribution of the i-th component of the mixture

Fi(~x) =
1

(2π)n/2
√

det(Σi)
exp

(
−1

2
(~x− µi)TΣ−1

i (~x− µi)
)
.

The density of the GMM is F =
∑k

i=1wiFi. We will use θ to refer to the set of weight, mean,
and covariance parameters

θ = {(w1, µ1,Σ1), (w2, µ2,Σ2), . . . , (wk, µk,Σk)}.

and use F̂ , F̂i, θ̂, etc. along with their common variations (e.g. θ̂′) to indicate estimates.
Throughout, wmin = mini{wi} denotes the minimum mixture weight and σi denotes the
largest singular value of Σi, i.e. the maximum standard deviation along any direction in Rn.
S will denote the set of sample points and Si ⊂ S the points drawn from Fi. Unless stated
otherwise it is assumed that the exact number of mixture components k is known.

In order to appreciate some of the considerations involved in learning GMMs, it is important
to understand some of the surprising, even strange, properties of high-dimensional Gaussians.
When n is large, most of the probability mass lies far away from a Gaussian’s mean. For
the simple case of a spherical Gaussian, if ~x ∼ N (µ, σ2In), then the expected square of the
Euclidean norm E(||~x−µ||2) = nσ2. By the law of large numbers, for large n the distribution
of the squared length must be tightly concentrated about its expected value. Thus, most of
the mass lies within a thin shell a distance

√
nσ from the mean of the Gaussian [Dasgupta,

1999]. In the more general case of an arbitrary Gaussian N (µ,Σ), for large n the distribution
is concentrated at a Mahalanobis distance ||~x||µ,Σ =

√
(~x− µ)TΣ−1(~x− µ) =

√
n from the

Gaussian’s center. This result suggests that even if two Gaussians have the same mean, there
may still be some hope of determining which one a point was drawn from! This “concentration
of distance” result and many variations on it are very useful when trying to learn mixtures
of Gaussians.

2

2.1 Defining the Problem

In order to properly define the learning problem and determine an appropriate notion of ef-
ficient learning, we must detail a few considerations. First, we must define what is means
for the components of a GMM to be different. If two components of the mixture have the
same distribution, after all, there is no hope of distinguishing them. There are a variety of
ways of defining such a separability condition, but one natural notion is based on the distance
between the means, while accounting for the variance of the Gaussians.

Definition 2.1. A pair of Gaussians N (µ1,Σ1) and N (µ2,Σ2) have separation ∆ if

||µ1 − µ2|| ≥ ∆(σ1 + σ2).

A mixture has separation ∆ if each pair of components have separation ∆.

Some authors replace σ1 + σ2 with max{σ1, σ2}, but this will alter results by at most a fac-
tor of 2, and thus does not affect big-O results. Alternatively, separability can be thought
of in statistical terms by considering the density functions of the mixture components directly.

Definition 2.2. [Moitra and Valiant, 2010] A GMM F =
∑

iwiFi is ∆-statistically learn-
able if wmin ≥ ∆ and mini 6=j D(Fi, Fj) ≥ ∆. Here, if f(x) and g(x) are probability distribu-
tions on Rn, then the statistical distance between the distributions is defined as

D(f(x), g(x)) =
1
2

∫
Rn
|f(x)− g(x)|dx.

A general notion of the difficulty of learnability for any family of probability distributions
(which reduces to a separation condition in the GMM case) arises from treating θ as a vector
within a parameter space Θ ⊂ Rm and considering the open ball around θ such that all the
probability distributions arising from parameter choices within that ball are distinct.

Definition 2.3. [Belkin and Sinha, 2010b] Let pθ be a family of probability distributions
parameterized by θ ∈ Θ. For each θ, define the radius of identifiability to be

R(θ) = sup{r > 0|∀θ1 6= θ2, (||θ1 − θ|| < r ∧ ||θ2 − θ|| < r) =⇒ (pθ1 6= pθ2)}

If the condition cannot be satisfied, then R(θ) = 0.

In the case of a GMM, R(θ) has a simple form that measures the minimal pairwise parameter
distances, while also taking into account the minimum mixing weight.

Proposition 2.4. [Belkin and Sinha, 2010b] The radius of identifiability of a GMM with
parameter set θ is given by

R(θ)2 = min
(

1
4

min
i 6=j

{
||µi − µj ||2 + ||Σi − Σj ||2F

}
, w2

min

)
,

where || · ||F denotes the Frobenius norm.

3

In addition to accounting for the separation of GMM components, we must also decide how
precisely we wish to learn the distribution and formalize what we mean by “learn precisely.”
Some algorithms solve the problem of clustering—identifying which component generated each
data point. Once this is known, there are many algorithms available that provably estimate
the GMM parameters, so clustering methods need not worry about this parameter precision
issue explicitly. Many of the notions of closeness that have been used in the context of GMM
learning are captured by the following definition, generalized from that found in Moitra and
Valiant [2010].

Definition 2.5. A parameter set for a mixture of k Gaussians θ̂ = {(ŵ1, µ̂1, Σ̂1), . . . , (ŵk, µ̂k, Σ̂k)}
is an ε-close estimate for θ if there is a permutation π ∈ Sk such that for all i ∈ [k],

1. |wi − ŵπ(i)| ≤ ε

2. d(N (µi,Σi),N (µ̂π(i), Σ̂π(i))) ≤ ε

where d(·, ·) denotes some measure of distance between the Gaussians.

There are many possibilities for distance measure d. For example, we could use the statistical
distance D(·, ·) defined above or a measure of parameter distance such as

Dp

(
N (µ,Σ),N (µ′,Σ′)

)
= ||µ− µ′||+ ||Σ− Σ′||F .

Typically, when defining an “efficient learning algoirthm,” there should be at worst a poly-
nomial dependence on each parameter (or on some natural function of that parameter) given
to the algorithm. However, Moitra and Valiant [2010] showed that there is no hope for such
a dependence with respect to k, the number of mixture components. In fact, any general
algorithm for learning GMMs must have an exponential dependence on k. This does not
preclude learning special classes of GMMs—such as those consisting spherical Gaussians or
imposing a separation requirement—in time polynomial in k. Finally, any learning algorithm
for GMMs will require Ω(1/wmin) samples in order to ensure we have seen a sample from
each component with high probability. With all those considerations in mind, we are now
prepared to give a PAC learning-style definition for (efficiently) learning general GMMs. The
definition is purposefully vague since, as we have seen, there is no standard meaning for an
estimate to be within ε of the true parameters and no single measure for component separation.

Definition 2.6. An algorithm A efficiently learns the class of k-component, n-dimensional
GMMs if, given a precision parameter 1 > ε > 0 and confidence parameter 1 > δ > 0, A
outputs an estimate θ̂ that is within ε of the true parameters θ with probability at least 1− δ,
using poly(n, 1/ε, 1/δ, 1/wmin, 1/∆) time and samples. The samples are drawn i.i.d. from the
GMM F parameterized by θ while ∆ characterizes the separation of the true mixture.

With appropriate modifications, this definition is applicable to mixtures of other distributions
as well. In order to concentrate on the techniques of general interest for learning GMMs, in the
proceeding discussion of specific algorithms and techniques, we will sometimes elide mention
of the particular measures used by an algorithm to calculate ∆ and whether an estimate is
ε-close. It is worth mentioning the slightly different (and easier) PAC learning framework used
by Feldman et al. [2006], which only requires the density to be estimated, not the parameters.
They show how to do accomplish this estimation task for mixtures of axis aligned Gaussian,
with no separation conditions, by using the method of moments.

4

3 Learning GMMs

A prototypical learning algorithm for GMMs involves three steps. First, the n-dimensional
data is projected onto one or more subspaces whose dimension(s) are polynomial in k. Since
in most applications (and in the asymptotic limit) k � n, learning with these subspaces
is (usually) efficient. The projection procedure maintains the Gaussianity of the data, so
the problem is, roughly speaking, reduced to one of learning a poly(k)-dimensional GMM.
Hence, the next step is either to identify each sample with the component of the mixture
that generated it or use some other method to estimate components. Many of the procedures
that take the first approach rely on “picking the low-hanging fruit.” That is, they find
the most separated component first, then recurse on the remaining data. This approach
takes advantage of properties like the concentration of distance discussed in the previous
section. Once components have been identified, the final step is to reconstruct the Gaussian
components in the original n-dimensional space. Reconstruction is often quite technical and
tends not to provide much high-level insight into the problem, so we will primarily focus on
solutions to the first two steps.

In addition to the pioneering work of Dasgupta [1999] (whose algorithm required separation
of Ω(n

1
2)) and the density estimation results of Feldman et al. [2006], there are many other

pieces of research which we briefly review now for completeness. Other early work includes
that of Dasgupta and Schulman [2000], who improved the original separation requirement to
Ω(n

1
4) for spherical Gaussians using an two-round variant of the EM algorithm. Soon after,

Arora and Kennan [2001] showed how to learn general GMMs under the same separation
condition. They did not use projection, relying solely on concentration of distance results.
More recently, [Belkin and Sinha, 2010a] describe how to learn identical spherical Gaussians
with no minimum separation required. This is done using projection onto k components and
the Fourier transform. See Table 1 for a comparison of methods.

4 Spectral Learning

Spectral methods rely on calculating the singular value decomposition of the samples (or a
subset of them), then projecting to the subspace spanned by the top right singular vectors,
also known as the principal components. The original spectral algorithm for learning mixtures
of spherical Gaussians was proposed by Vempala and Wang [2002]. In fact, their result applies
to mixtures of weakly isotropic distributions. A weakly isotropic distribution is one for which
the variance of any 1-dimensional projection is a constant. Although only applicablele to
a small subset of GMMs, the techniques and results provide good motivation for, and are
indicative of, what is to come. The algorithm repeatedly projects the data onto the top k
principle components. The reason this works is that with high probability, the space spanned
by these vectors differs from that spanned by the mixture component means µi by no more
than a small factor. Thus, the structure of the distribution is approximately preserved under
projection. After projecting, at least one set of points Si generated by a single component
is found using distance concentration, which guarantees the points from a single component
will be clustered close together with high probability. The identified points are removed from
consideration and the whole procedure, including projection, is repeated until all points are

5

clustered. At this stage estimating the means and covariance matrices is easy. The condition
on the means of the Gaussians is fairly weak, only requiring separation Ω(k

1
4 log

1
4 (n/wmin)).

Recall that S is the set of sample points.

Algorithm 1 Spectral algorithm for learning spherical GMMs [Vempala and Wang, 2002]
M ← |S|
while S 6= ∅ do

Compute the k-dimensional SVD subspace W of S
Project S onto W
R← maxx∈S miny∈S ||x− y||
S′ ← {x ∈ S : miny∈S ||x− y|| ≤ 3ε̂R2}
G← ∅
while S′ 6= ∅ do

Let x, y be the two closest points in S′

`← ||x− y||2
(

1 + 8
√

6 ln M
δ

k

)
H ← {w ∈ S′ : ||x− w||2 ≤ `}
S′ ← S′ \H
G← G ∪ {H}

end while
Report each H ∈ G with variance greater than 3εR2/k as the set of points generated by

one component of the mixture and remove those points from S
end while

This procedure nicely illustrates some common elements of GMM learning. In addition to
using concentration of distance and projection, it also relies on getting the “low-hanging
fruit” and then recursing. The benefits of doing this with an eye toward obtaining provable
guarantees is clear. For such a recursive procedure to work, one need “only” show that on each
iteration the “easiest” component(s) can be identified. After that, the problem is reduced
to learning a k′-component mixture, for some k′ < k. So by induction the procedure will
terminate, solving the original k-component problem.

Kannan et al. [2005] refined and extended these spectral projection techniques, providing
a vast generalization applicable to any mixture of log-concave distributions (which includes
GMMs). In the log-concave setting, it is not longer true that the SVD subspace (approx-
imately) contains the means. However, it turns out that for any mixture, the components
means will on average remain separated after projection.

Theorem 4.1. [Kannan et al., 2005] Let W be the k-dimensional SVD subspace of sample
set S, where the samples are generated from some k-component (not necessarily log-concave)
mixture. For each i ∈ [k], let µi,S be the mean of Si and σ2

i,S(W) be the maximum variance
of Si along any direction in W . Then,

k∑
i=1

|Si|d(µi,S ,W)2 ≤ k
k∑
i=1

|Si|σ2
i,S(W),

where d(x,W) denotes the distance between the point x and the subspace W .

6

The other good news that follows from this result is that, since the distance of a point from
the mean of the distribution it was drawn from can only decrease after projection, the ratio of
the inter- to intra-component distances is magnified. In this general setting, however, there is
no guarantee that the samples from different components do not overlap. This issue is over-
come by requiring the mixture components to be log-concave distributions. Such distributions
have two key properties. First, as in the special case of Gaussians, they are well-behaved in
the sense that the projection of a log-concave distribution remains log-concave. Second, the
distribution is concentrated about the mean. Specifically, the distance of a random point
from the mean has an exponential tail.

Lemma 4.2. Let F be a any log-concave distribution over Rn with mean µ and second moment
R2 = EF [(X − µ)2]. Then there exists an absolute constant c such that ∀t > 1,

Pr(|X − µ| > tR) < e−ct.

With these results in mind, the algorithm proceeds very similarly to the previous one by taking
an iterative, distance-based approach. Each iteration identifies exactly one component.

Algorithm 2 Spectral algorithm for learning log-concave mixtures [Kannan et al., 2005]
m← |S|
while S 6= ∅ do

Compute the k-dimensional SVD subspace W using a subset T of S of size m0

S ← S \ T
Project S onto W
for all x ∈ S do

- Calculate the set S(x) consisting of the closest 1
2wminm points to x

- Find the mean µ(x) of S(x)
- Form the matrix A(x) whose rows are y − µ(x) for each y ∈ S(x)
- Calculate σ(x), the largest singular value of A(p), i.e. the maximum standard

deviation of S(x) in W
end for
x0 ← arg maxx∈S σ(x)

T0 ←
{
x ∈ T : ||W (x0)−W (x)|| ≤

√
k logN
wmin

σ(x)
}

, where W (x) denotes the projection of
x to W

Report T0 as the set of points generated by one component of the mixture and
remove those points from T

end while

There are two downsides to this algorithm when compared to that for spherical Gaussians.
One is that the mixture must have separation Ω∗(k

3
2 /w2

min), which is a bit stronger than
what Vempala and Wang require (the Ω∗ notation suppresses logarithmic terms in the other
parameters). In addition, kN0 samples are used for in the k SVD computations, where
N0 = poly(n, 1/ε, log(1/δ), 1/wmin). For technical reasons, these points must be discarded and
cannot be classified. While our definition of learning only requires estimating the parameters,
in practice a classification of the samples is often of interest as well, so it is unfortunate that
many points must be discarded. Of course, other methods, such as assigning each discarded
point to the Gaussian with the closest mean could be used. Although there is no guarantee

7

of correctness, in an applied setting such a guarantee for these extra points, while nice, is
probably not critical.

In Achlioptas and McSherry [2005], the separation requirement for learning mixtures of log-
concave distributions using spectral methods was reduced to Ω(k +

√
k log n). Conceptually,

their approach is very similar to the two already described.

5 Projection Approaches

The most general algorithms for GMM learning [Moitra and Valiant, 2010, Belkin and Sinha,
2010b] have not been based on spectral methods, but instead rely on random or brute force
projection. Neither requires any separation assumptions.

5.1 Random Projection

Moitra and Valiant [2010] present an algorithm with a statistical flavor: it returns an ε-close
estimate for θ, with statistical distance D(·, ·) used to measure distance between the Gaus-
sians. Within this subsection ε-close estimates will always be based on statistical distance.
Their analysis makes use of parameter distance as well, however. While in general the param-
eter and statistical distance between two Gaussian can be unrelated, this only happens when
the variances are allowed to be arbitrarily large or small. So, as long as there are reasonable
upper and lower bounds on the variances, we can convert from one to the other. The results of
Moitra and Valiant [2010] are generalizations of, and rely on insights from, Kalai et al. [2010].
The core algorithms developed in both papers assume that that the mixture distribution is in
isotropic position. A distribution is in isotropic position if it is in weakly isotropic position,
has mean zero, and has variance one. In each case the results are completely general, however,
since a sample can be put into isotropic position. If the sample is sufficiently large, then the
underlying distribution for the transformed data will be in (nearly) isotropic position, which
is sufficient to ensure correctness of the core algorithms.

Kalai et al. [2010] rely on three key lemmas to learn mixtures of two Gaussians: the 1D Learn-
ability Lemma, the Random Projection Lemma, and the Parameter Recovery Lemma. The
1D Learnability Lemma states that the parameters of a two component univariate Gaussian
mixture can be efficiently recovered as long as the Gaussians have a non-negligible statistical
distance. The Random Projection Lemma guarantees that, for an isotropically positioned
n-dimensional mixture of two Gaussians with non-negligible statistical distance, with high
probability the projection of the mixture onto a random unit vector u will yield a univariate
mixture whose Gaussians still have non-negligible statistical distance. Finally, the Parameter
Recovery Lemma states that, if we have accurate estimates for an n-dimensional Gaussian
in n2 sufficiently different directions, we can accurately recover its parameters. These three
lemmas suggest the procedure outlined in Algorithm 3 for learning mixtures of two Gaussians.
A “robust” version serves as a component in the algorithm for learning arbitrary mixtures.

When learning many Gaussians, the Parameter Recovery Lemma remains applicable and
the 1D Learnability Lemma can be generalized, although doing so is quite technical. The
algorithm for learning the univariate parameters relies on “deconvolving” the mixture by a

8

Algorithm 3 Learning mixtures of two Gaussians [Kalai et al., 2010]
Pick a random unit vector u
Choose n2 vectors u1, . . . , un2 that are fairly close to u
for all i ∈ [n2] do

learn very accurate univariate parameters for the projection of the mixture onto ui
end for
Recover the true n-dimensional parameters for the mixture with high probability

suitable Gaussian in order to increase the separation of the components. Then the method
of moments is used to find the parameters whose lower order moments closely match the
empirical moments of the data. Such a match is found by performing a simple grid search
over the parameter space. We will refer to the procedure for learning k-component univariate
mixtures as the Basic Univariate Algorithm. It requires that the pairwise parameter distances
are greater than a known ε, with wmin ≥ ε.

The problem is that for more than two Gaussians, the Random Projection Lemma ceases to
hold. In fact, it is possible to construct mixtures of three Gaussians that, while separated
in n dimensions, will with high probability appear extremely close to being a mixture of two
Gaussians when projected onto a random vector u. More generally, if there are k compo-
nents, projections onto u may yield different numbers of components k′, k′′ < k depending
on the direction. Worse, this may happen even when comparing, say, n2 projections that are
only slightly different, as was done in Algorithm 3. Fortunately, this problem can be easily
overcome. Say the first perturbed projection u1 produces a k′-component univariate mixture.
For one thing, we can ignore any projections that produce fewer than k′ components. And,
if a later projection ui produces k′′ > k′ components, then we should restart the procedure
with u = ui. In addition to finding n2 univariate parameter estimates with the same number
of components, we would also like these parameter estimates to be much more precise than
the distances between the projections and have the components of each estimate be reason-
ably far apart. These two requirements ensure that components are identifiable across the n2

estimates so that all the 1D estimates can be combined to reconstruct an estimate θ̂ of the
parameters in n dimensions. The procedure for producing the n2 estimates and reconstruct-
ing the n-dimensional estimate is called the Partition Pursuit Algorithm. Since the number
of components k′ in θ̂ may be less than k, we need to define in what sense θ̂ is a good estimate
of the true parameters θ.

Definition 5.1. [Moitra and Valiant, 2010] Given a GMM F of k Gaussians parameterized
by θ, a GMM F̂ of k′ ≤ k Gaussians parameterized by θ̂ is an ε-correct subdivision of F
if there is a surjective map π : [k]→ [k′] such that

1. ∀j ∈ [k′], |
∑

i:π(i)=j wi − ŵj | ≤ ε

2. ∀i ∈ [k], Dp

(
N (µi,Σi),N (µ̂π(i), Σ̂π(i))

)
≤ ε

Note that unlike in the definition of ε-close estimate, which relied on statistical distance, this
definition is based on parameter distance.

The Partition Pursuit Algorithm cannot employ the Basic Univariate Algorithm directly,
however, since the former can make no guarantees to the latter about parameter distances.

9

The Basic Univariate Algorithm expects a k-component univariate mixture and returns a
k-component estimate. Since the components may in fact be arbitrarily close together, we
must employ the General Univariate Algorithm, which returns an ε-correct subdivision of
the univariate mixture as the Partition Pursuit Algorithm requires. To accomplish this, the
Basic Univariate Algorithm is run repeatedly with different precisions. As long as all the
pairwise parameter distances are much larger or smaller than the target precision, the Basic
Univariate Algorithm will function as if it were given a mixture with possibly fewer than k
components. Thus, if the precision values are chosen far enough apart, then each pairwise
parameter distance can only corrupt one run. Therefore, the the majority of the parameters
will agree with each other on each run, so the General Univariate Algorithm will be able to
find a consensus amongst the runs and construct an ε-correct subdivision of the mixture.

The final Anisotropic Algorithm only requires an upper bound on the number of components
in the mixture. To achieve this flexibility, once an ε-correct subdivision F̂ of F is obtained,
it must be determined whether 1) there is a components in F̂ that corresponds to more than
one component in F and 2) if so, which component in F̂ this is. These problems are solved by
the Hierarchical Clustering Algorithm. It turns out that with high probability, a component
F̂j will contain more than one true component if and only if its covariance matrix has a small
eigenvalue. This eigenvalue can be used to partition Rn into two sets (A,B), such that one of
the components in F̂j is in A and another is in B. Moreover, with high probability, samples
drawn from a component Fi of the true mixture will either be in A or in B. Depending
on whether such an offending component is detected, the Hierarchical Clustering Algorithm
either returns F̂ or the partition. Thus, we obtain the following high-level algorithm for
learning arbitrary GMMs.

Algorithm 4 Anisotropic Algorithm for learning GMMs [Moitra and Valiant, 2010]
Place the samples in isotropic position
Run the Hierarchical Clustering Algorithm (HCA)
if HCA returns F̂ then

return F̂ , which is an ε-close estimate of F with high probability
else {HCA returns partition a (A,B)}

Draw an additional sample set S from sample oracle for F
Run the Anisotropic Algorithm on the samples SA ⊂ S that are in A to get F̂A
Run the Anisotropic Algorithm on the samples SB ⊂ S that are in B to get F̂B
return F̂ = |SA|

|S| F̂A + |SB |
|S| F̂B

end if

The Anisotropic Algorithm and its subroutines use a number of interesting strategies. A
familiar strategy also used by the spectral algorithms is to break the samples apart recursively.
The spectral algorithms, however, try to find the samples that were generated by the “easy”
components. The Anisotropic Algorithm, on the other hand, splits apart components that
are close together and then analyzes them separately, which has the advantage of allowing it
to handle components that are arbitrarily close together. Another technique which is used
repeatedly is isolating limited failures. One instance is in the Projection Pursuit Algorithm,
which restarts after a univariate estimate returns more components than a previous one and
ignores estimates with too few components. In a sense the Hierarchical Clustering Algorithm
also isolates (and exploits) failures by finding the estimated components which consist of more

10

than one true component, then splitting the data from merged components so that the failure
cannot happen again.

5.2 Deterministic Projection

A different projection-based approach to learning arbitrary GMMs is taken in Belkin and
Sinha [2010b]. They first develop some general results for polynomial families of distributions.
Within this section, families of distributions will be parameterized by vector θ which belongs
to a parameter set Θ ⊂ Rm. The parameter set is assumed to be compact and semi-algebraic
(so closed and bounded). A set is semi-algebraic in Rm if it is the finite union of sets defined
by a system of algebraic equations and inequalities. Although this way of thinking about θ
is slightly different from the convention otherwise used, in practice it makes little difference.
This is because the Frobenius norm of a matrix (used in most of the other results that
analyze covariance matrices) is equivalent to the `2-norm of a flattened matrix (used in this
subsection). The semi-algebraic requirement is not very limiting, as spheres, polytopes, and
the set of semi-definite matrices are all examples of semi-algebraic sets.

The first set of key results apply to polynomial family distributions. Many distribution
families of interest are polynomial, including the Gaussian, gamma, chi-square, and poisson
distributions. Conveniently, the convex combinations of polynomial families form a polyno-
mial family, so mixtures of polynomial distributions are also polynomial.

Definition 5.2. [Belkin and Sinha, 2010b] A family of probability density functions pθ pa-
rameterized by θ is a polynomial family if each raw l-dimensional moment Mi1,...,il(θ) =∫
xi11 · · ·x

il
l dpθ of the distribution exists and can be represented as a polynomial of the pa-

rameters (θ1, . . . , θm) and if pθ is uniquely defined by its moments.

It is convenient to order the moments lexicographically and denote them byM1(θ), . . . ,Mn(θ), . . . ,
which corresponds to the standard ordering in the one-dimensional case. Polynomial families
have a number of useful properties that make them amenable to analysis. Of particular inter-
est is the following result, which will allow the method of moments to be used (cf. Feldman
et al. [2006], Kalai et al. [2010], and Moitra and Valiant [2010]).

Theorem 5.3. [Belkin and Sinha, 2010b] Let pθ be a polynomial family of distributions.
Then there exists some N ∈ N such that pθ1 = pθ2 if and only if Mi(θ1) = Mi(θ2) for all
i ∈ [N].

The theorem hints that we should only need to compare a finite number of moments of a
polynomial distribution in order to determine whether it closely matches the true distribution,
whose moments are estimated from the data. In order to formalize this intuition, it is useful
to define a generalized notion of an ε-ball in the parameter space that takes into account
the case in which different parameters may have identical probability distributions. This
occurs in the case of Gaussian mixtures since the components may be ordered arbitrarily. Let
E(θ) = {ω ∈ Θ : pω = pθ} be the set of parameters which have identical distributions to pθ.
With these, we can construct an ε-“neighborhood” of θ, which is, roughly speaking, the union
of neighborhoods around each point in E(θ)

N (θ, ε) =
{
ω ∈ Θ : ∃ω′, θ′ ∈ Θ, 0 < ε′ < ε s.t. ω′ ∈ E(θ′)∧

∣∣∣∣ω − ω′∣∣∣∣ < ε′∧
∣∣∣∣θ − θ′∣∣∣∣ < ε− ε′

}
.

11

We will be interested in finding a parameter estimate within the ε-neighborhood of the true
parameters. Note that inclusion in N is symmetric: if θ1 ∈ N (θ2, ε), then θ2 ∈ N (θ1, ε).

The facts that N (θ, ε) and the parameter space Θ are semi-algebraic sets, that Θ is bounded,
and that pθ has polynomial moments are important because they allow for results from ab-
stract algebra and real algebraic geometry to be utilized to understand the structure of these
sets and the distributions’ moments. In particular, these features can be used to derive a
lower bound that guarantees that if Mi(θ1) and Mi(θ2) are sufficiently different for at least
one i ∈ [N], then θ1 and θ2 are not in each other’s ε-neighborhoods. There is also an upper
bound that is polynomial in the standard parameters on how different Mi(θ1) and Mi(θ2) can
be. These bounds allow an estimate within the ε-neighborhood of the true parameters to be
found with probability 1 − δ by computing the first N empirical moments using poly(1

ε ,
1
δ)

samples. After that a simple search over a rectangular grid of size O(εc

N
√
m

) will find pa-
rameters for a distribution with moments that closely match the empirical ones. Here c is a
constant that depends on the polynomial family. A corollary to this result is based on the
radius of identifiability R(θ), which was introduced in Section 2.

Theorem 5.4. [Belkin and Sinha, 2010b] For parameter vector θ ∈ Θ, if E(θ) = {θ1, . . . , θk}
is a finite set, then there exists an algorithm such that, given ε > 0, outputs θ̂ within ε′ =
min(ε,minj R(θj)) of θi for some i ∈ [k] with probability 1 − δ using a number of samples
polynomial in 1

ε′ and 1
δ .

Further work is required to apply this general result, since the number of parameters in a
GMM grows with the dimension. Thus, the algorithm just outlined is not efficient when
applied to n-dimensional data. In the case of a Gaussian mixture, however, it can be shown
that there is guaranteed to be some (2k2)-dimensional coordinate subspace W such that
projection onto W shrinks R(θ) by at most a factor of 1/n. This subspace can be found
by trying all

(n
2k2

)
coordinate projections and estimating the parameters for each one using

Theorem 5.4. It is possible to estimate the radius of identifiability for GMMs in polynomial
time using these parameters, so we do this for each projection and choose the one with the
largest R. Theorem 5.4 allows us to estimate the parameters for the 2k2 coordinates in W
with high accuracy. Let ei denote the standard basis vector for the i-th coordinate. The
rest of the means can be estimated by projecting onto Wi = span(W, ei) for coordinates
ei /∈ W . The remaining entries in the covariance matrices can be estimated by projecting
onto Wij = span(W, ei) where either ei /∈ W or ej /∈ W . This procedure is summarized in
Algorithm 5.

There is an appealing simplicity and potentially wide applicability to this deterministic projec-
tion approach. But, unfortunately, Belkin and Sinha [2010b] do not quite provide a complete
algorithm since they do not actually give values for the constants c and N , which are needed
to implement the algorithm. Their theorems only prove the existence of such constants, but
provide no direction as to how one might calculate them for a polynomial family of interest.

6 Conclusion and Future Directions

With the positive results of Moitra and Valiant [2010] and Belkin and Sinha [2010b], along
with the negative result of Moitra and Valiant [2010] on the exponential dependence of learning

12

Algorithm 5 Learning polynomial families [Belkin and Sinha, 2010b]
Find the 2k2 dimensional coordinate subspace W with maximum empirical R(θ)
Project the samples S onto W and estimate the means and covariance entries for these 2k2

coordinates (by Theorem 5.4)
for all ei /∈W do
Wi ← span(W, ei)
project S onto Wi

estimate the component variances and means along ei (by Theorem 5.4)
for all ej /∈W do
Wij ← span(W, ei, ej)
project S onto Wij

estimate the component covariances between ei and ej (by Theorem 5.4)
end for

end for

on the number of components, the problem of probably learning Gaussian mixture models
has arguably been solved. Certainly both these general methods would benefit from efficiency
gains to make them more attractive for practical implementations, so research is this area will
undoubtably continue. Given this fairly happy state of affairs, however, one natural question
to ask is how one might learn GMMs if the number of components is unknown. If there is a
reasonable upper bound on the k, then the Anisotropic Algorithm can be used. It also seems
plausible that running any of the algorithms presented here with k = 1, 2, . . . and analyzing
the likelihood of each parameter estimate, one could choose the right k with high probability.
This procedure could be very slow given the exponential dependence on k and the need (most
likely) to run the algorithm for values of k larger than the true one.

Another logical direction for further research is finding ways to provably learn other distribu-
tions and mixtures. GMMs serve as good starting point because they are so widely used, but
there are many other distributions of interest. Some work has already been done in this area,
such as learning mixtures of heavy tailed distributions [Dasgupta et al., 2005, Chaudhuri and
Rao, 2008a] and mixtures of product distributions [Chaudhuri and Rao, 2008b, Feldman et al.,
2008]. In addition, we have already discussed spectral results for mixtures of log-concave dis-
tributions. Among the works discussed in detail, that of Belkin and Sinha [2010b] seems to
have the greatest potential for generalization. In particular, a promising approach would be
to combine the positive results related to projecting log-concave distributions, such as those
in Kannan et al. [2005], with the results for polynomial families. One possibility is to project
onto the top principal components and develop maximal ε-neighborhood shrinkage results for
this projection. Then the method of moments could be used via Theorem 5.4, although a
more sophisticated parameter reconstruction algorithm than the one that was used in Algo-
rithm 5 would be required. It worth noting that the classes of log-concave and polynomial
distributions have a non-trivial intersection—the Gaussian, gamma (with shape parameter
≥ 1), chi-square, and Laplace distributions all fall in both categories—so such an algorithm
could have wide applicability.

13

Author Min. Separation Mixture Class Method Comments
Dasgupta [1999]

√
n Gaussian with shared covariance

matrix
Random projection

Dasgupta and Schulman [2000] n
1
4 Spherical Gaussian EM

Arora and Kennan [2001] n
1
4 Gaussian Distance-based

Vempala and Wang [2002] k
1
4 Spherical Gaussian Spectral, distance-based

Kannan et al. [2005] k
3
2 /w2

min Log-concave Spectral, distance-based need to know
wi

Achlioptas and McSherry [2005] k +
√
k log n Gaussian Spectral

Feldman et al. [2006] > 0 Axis aligned Gaussians Method of moments (MoM) no parameter
estimation

Belkin and Sinha [2010a] > 0 Identical spherical Gaussian Spectral
Kalai et al. [2010] ≥ 0 Gaussian with two components Random projections, MoM
Moitra and Valiant [2010] ≥ 0 Gaussian Random projections, MoM
Belkin and Sinha [2010b] ≥ 0 Gaussian Deterministic projections, MoM

Table 1: Comparison of some methods for learning GMMs. The final three methods allow means to be the same as long as the
associated covariances are different.

14

References

D. Achlioptas and F. McSherry. On spectral learning of mixtures of distributions. In COLT,
2005.

S. Arora and R. Kennan. Learning mixtures of arbitrary Gaussians. In STOC, 2001.

M. Belkin and K. Sinha. Toward learning Gaussian mixtures with arbitrary separation. In
COLT, 2010a.

M. Belkin and K. Sinha. Polynomial learning of distribution families. In FOCS, 2010b.

K. Chaudhuri and S. Rao. Beyond Gaussians: Spectral methods for learning mixtures of
heavy tailed distributions. In COLT, 2008a.

K. Chaudhuri and S. Rao. Learning mixtures of product distributions using correlations and
independence. In COLT, 2008b.

S. Dasgupta. Learning mixtures of Gaussians. In FOCS, 1999.

S. Dasgupta and L. Schulman. A two round variant of em for gaussian mixtures. In Conference
on Uncertainty in Artificial Intelligence, 2000.

S. Dasgupta, J. E. Hopcroft, J. Kleinberg, and M. Sandler. On learning mixture of heavy
tailed distributions. In FOCS, 2005.

A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data
via the EM algorithm. J. Roy. Statist. Soc. Ser. B, 39:1–38, 1977.

J. Feldman, R. A. Servedio, and R. O’Donnell. Pac learning axis aligned mixtures of Gaussians
with no separation assumption. In COLT, 2006.

J. Feldman, R. O’Donnell, and R. A. Servedio. Learning mixture of product distributions
over discrete domains. SIAM Journal of Computing, 37(5):1536–1564, 2008.

A. T. Kalai, A. Moitra, and G. Valiant. Efficiently learning mixtures of two gaussians. In
STOC, 2010.

R. Kannan, H. Salamasian, and S. Vempala. The spectral method for general mixture models.
In COLT, 2005.

A. Moitra and G. Valiant. Settling the polynomial learnability of mixtures of gaussians. In
FOCS, 2010.

S. Vempala and G. Wang. A spectral algorithm for learning mixture models. In FOCS, 2002.

15

