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e Goal: predict future insurance claims based on (real) historic data
e Try Bayesian inference with (non-trivial) model (data is 10 time series)

 Problem: uncertainty not well-calibrated because model is wrong
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Bagged posterior corrects for model
misspecification

Goal: predict future insurance claims based on (real) historic data
Try Bayesian inference with (non-trivial) model (data is 10 time series)
Problem: uncertainty not well-calibrated because model is wrong

Alternative: the bootstrap = too little data
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Bagged posterior corrects for model
misspecification

Goal: predict future insurance claims based on (real) historic data
Try Bayesian inference with (non-trivial) model (data is 10 time series)
Problem: uncertainty not well-calibrated because model is wrong
Alternative: the bootstrap = too little data

Solution: use the bagged posterior (BayesBag)
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Agenda

BayesBag for parameter inference
(and prediction)

BayesBag theory and methodology

BayesBag for model selection
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Bayesian inference

Goal: learn about unobserved phenomenon
(parameter) of interest 6 [e.g. future claims]

Prior beliefs z,(0) about the phenomenon

Observe data Y via model p(Y | 6)

Combine prior & likelihood to form posterior:
m(0]Y) o< p(Y | 0)mo(6)

Benefits: coherent belief updates, uncertainty
quantification, flexible modeling, and more

Assumption #1: measurement model correct:
observed Y has distribution p(Y | Gtrue)

Assumption #2: Prior puts sufficient mass on
true parameter Oirue

/ prior

/

posterior
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Bootstrapping

Data Y = (Y}, ..., Yn), where Y; ~ Pie Pirue

Interested in parameter that best
explains distribution [e.g. mean of
independent normal observations]

] ] Y ! "o 1
Want sampling uncertainty [e.g. 1o 11

distribution of mean(Y) under Pire] Yooot : !

Bootstrap: replace Pire With Py mea”(Yb(olo)t) mea”(}@(f())t) mean(Yb(OB;z)

Sample B bootstrap datasets to get

empirical distribution [e.g. mean(Ypeor)] ~ diStriPution of...

mean(Ypoor) given Y

Benefits: no assumptions about Pirue, mean(Y)
easy to use, can parallelize across B

Challenges: B large (1,000-100,000),
finite-sample properties
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Recall: posterior given data Y is
denoted (6 | Y)
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Bootstrapping Bayes

Recall: posterior given data Y is
denoted (6 | Y)

BayesBag method: Sample B
bootstrap datasets and average
over posteriors

B
1 b
mep(0|Y) =5 > (0| Yy,

b=1

Same benefits as bootstrap: no
correct model assumption, easy-
to-use, can parallelize across B

Suffices to take B = 50 or 100

Finite-sample benefits of Bayes
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Better parameter inference with
BayesBag

Assumed model: Gaussian linear regression with conjugate priors
Data-generating distribution F;,.: can be correct or misspecified
Oopt = optimal parameter that is “closest” to Piye

Performance metric is difference in log posterior density at Oy

10g ﬂ-BB<(90pt ‘ Y) - 10g W((gopt ’ Y)

better ey ot

data-generating distribution

model correct model
incorrect
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e Summarizing the previous slide...
Posterior variance = model-based uncertainty
Bootstrap variance = sampling-based uncertainty
BayesBag variance = model-based + sampling-based uncertainty
 Model correct: model-based uncertainty = sampling-based uncertainty
e Posterior and bootstrap variances correct
e BayesBag variance double-counts true uncertainty (conservative)

e Model incorrect: model-based uncertainty « sampling-based uncertainty

e Posterior variance far
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Posterior variance = model-based uncertainty
BayesBag variance = model-based + sampling-based uncertainty
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mismatch index = 1
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Diagnosing model-data mismatch

Posterior variance = model-based uncertainty

BayesBag variance = model-based + sampling-based uncertainty

 Mismatch index I can diagnose when
data disagrees with assumed model

mismatch index = 1

e -1 << e

. amount
e | = 0: no disagreement

e 1> 0: posterior overconfident bagged

standard "
posterior |

'. ,ooster/or
e I < 0: posterior under-confident j‘i J k

* Model criticism: mismatch index \ — r‘future'calms _$»0051 N

Indicates when model needs improvement

* Mismatch index can also detect problems with the prior

11



BayesBag in practice

12



BayesBag in practice

1) compute standard posterior (- |Y')

12



BayesBag in practice

1) compute standard posterior (- |Y')
— e.g., use MCMC to get approximate samples 61y, ..., 07 from 7(-|Y)

12



BayesBag in practice

1) compute standard posterior (- |Y')
— e.g., use MCMC to get approximate samples 61y, ..., 07 from 7(-|Y)

2) compute bagged posterior mpp(- | Y') using B &~ 50 bootstrap datasets

12



BayesBag in practice

1) compute standard posterior (- |Y')
— e.g., use MCMC to get approximate samples 61y, ..., 07 from 7(-|Y)

2) compute bagged posterior mpp(- | Y') using B &~ 50 bootstrap datasets

— e.g., use MCMC to get approximate samples (9&71), e szb,T) from 7 (- | Y<}§>)
forb=1,.... B

12



BayesBag in practice

1) compute standard posterior (- |Y')
— e.g., use MCMC to get approximate samples 61y, ..., 07 from 7(-|Y)

2) compute bagged posterior mpp(- | Y') using B &~ 50 bootstrap datasets

— e.g., use MCMC to get approximate samples (9&71), e szb,T) from 7 (- | Y<}§>)
forb=1,.... B

if Gaussian approximation to standard and bagged posteriors decent then

12



BayesBag in practice

1) compute standard posterior (- |Y')
— e.g., use MCMC to get approximate samples 61y, ..., 07 from 7(-|Y)

2) compute bagged posterior mpp(- | Y') using B &~ 50 bootstrap datasets

— e.g., use MCMC to get approximate samples (9&71), e szb,T) from 7 (- | Y<}§>)
forb=1,.... B

if Gaussian approximation to standard and bagged posteriors decent then

3a) compute mismatch index I

12



BayesBag in practice

1) compute standard posterior (- |Y')
— e.g., use MCMC to get approximate samples 61y, ..., 07 from 7(-|Y)

2) compute bagged posterior mpp(- | Y') using B &~ 50 bootstrap datasets

— e.g., use MCMC to get approximate samples (9&71), e szb,T) from 7 (- | Y<}§>)
forb=1,.... B

if Gaussian approximation to standard and bagged posteriors decent then

3a) compute mismatch index I

3b) if I < .2, consider refining the model and returning to step 1

12



BayesBag in practice

1) compute standard posterior (- |Y')
— e.g., use MCMC to get approximate samples 61y, ..., 07 from 7(-|Y)

2) compute bagged posterior mpp(- | Y') using B &~ 50 bootstrap datasets

— e.g., use MCMC to get approximate samples (9&71), e szb,T) from 7 (- | Y<}§>)
forb=1,.... B

if Gaussian approximation to standard and bagged posteriors decent then

3a) compute mismatch index I

3b) if I < .2, consider refining the model and returning to step 1

4) output bagged posterior computed in step 2
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Bayesian model selection

e Goal: based on data Y, select between 7T(ml ‘ Y) = .3
a (finite or countable) set of models i Fin whale
M ={my, mo, ...} Blue whale
—— Grey whale

e Example: systematics

Minke whale

e Goal: learn about evolutionary history

of a set of species [e.g. whales] m(my|Y) = .1
1%, — Fin whale
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Bayesian model selection

e Goal: based on data Y, select between

a (finite or countable) set of models
M = {m1, mo, }

e Example: systematics

e Goal: learn about evolutionary history
of a set of species [e.g. whales]

e Approach: infer which phylogenetic
trees are consistent with observed
species characteristics Y
[e.g. genetic data, physical features
such as coloring]

* Problem: Bayesian model selection still
assumes some model in M Is correct

m1

W(ml‘Y):S

Fin whale

mo

Blue whale
—— Grey whale

Minke whale

7T(m2|Y) = .1

— Fin whale

Blue whale

— Grey whale

Minke whale
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e Models are m; = N(—1,1) and my = N(1,1)
mi m2
e True distribution is P = N(0,1)
o Generate datasets YW Y@ of size n = 1000,
where Y;@ ~ N(0, 1).

4 2 0 2 4
m(my | YD) =1 m(my | Y#) =105 m(my | Y®) =1
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Then in the large data limit, All posterior mass
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1. For the standard posterior, / ity el
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mitochondrial coding DNA Fin JTGTCTTCTACACTCCARACAGGTTGTACGTCAC]
. Compute posterior tree Grey {GGGTCGCTGTAGACCAAGATACCGCTCTCACAT)
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e Compute overlap of 99%
high probabillity regions
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0.4
Hence, A, is a random walk 0.2
with E[A%] — o’n f

In other words, with very high
probability, |A,| = ©(n!/?)

Therefore, there is overwhelming evidence of order n'/2 for either mq or mo
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Bootstrap aggregating (bagging)

Have: samples Y= (Y3, ..., Y7)

Goal: predict future outcome
based on Y [i.e. regression]

Problem: prediction algorithm is
unstable [e.g. regression trees]

Bagging: stabilize predictions by
aggregating (averaging) over
predictions based on
bootstrapped datasets

Ptrue

P,
' T 1
1 N
0 0
covariates'\‘ /outcome
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Bootstrap aggregating (bagging)

Ptrue

Have: samples Y= (Y3, ..., Y7)
P,

Goal: predict future outcome
based on Y [i.e. regression]

Problem: prediction algorithm is Yoo

unstable [e.g. regression trees]
covariates\ /outcome

Bagging: stabilize predictions by — (X, Z;)
aggregating (averaging) over

predictions based on Zpred - (Xne’w’ Y)
bootstrapped datasets 7bag

_ (b)
pred o _Zf new Yboot)
Like bagging, BayesBag seems to
work well with B = 50 or 100 1 B :
mep(0|Y) =5 > w0 Yy

b=1



