Using Bagged Posteriors for Robust Inference

Jonathan Huggins Harvard University

Joint work with Jeff Miller

• Goal: predict future insurance claims based on (real) historic data

- Goal: predict future insurance claims based on (real) historic data
- Try Bayesian inference with (non-trivial) model (data is 10 time series)

- Goal: predict future insurance claims based on (real) historic data
- Try Bayesian inference with (non-trivial) model (data is 10 time series)
- Problem: uncertainty not well-calibrated because model is wrong

- Goal: predict future insurance claims based on (real) historic data
- Try Bayesian inference with (non-trivial) model (data is 10 time series)
- Problem: uncertainty not well-calibrated because model is wrong
- Alternative: the bootstrap ⇒ too little data

- Goal: predict future insurance claims based on (real) historic data
- Try Bayesian inference with (non-trivial) model (data is 10 time series)
- Problem: uncertainty not well-calibrated because model is wrong
- Alternative: the bootstrap ⇒ too little data
- Solution: use the bagged posterior (BayesBag)

Agenda

- BayesBag for parameter inference (and prediction)
- BayesBag theory and methodology
- BayesBag for model selection

 Goal: learn about unobserved phenomenon (parameter) of interest θ [e.g. future claims]

- Goal: learn about unobserved phenomenon (parameter) of interest θ [e.g. future claims]
- **Prior** beliefs $\pi_0(\theta)$ about the phenomenon

- Goal: learn about unobserved phenomenon (parameter) of interest θ [e.g. future claims]
- **Prior** beliefs $\pi_0(\theta)$ about the phenomenon
- Observe data Y via **model** $p(Y | \theta)$

- Goal: learn about unobserved phenomenon (parameter) of interest θ [e.g. future claims]
- **Prior** beliefs $\pi_0(\theta)$ about the phenomenon
- Observe data Y via **model** $p(Y | \theta)$
- Combine prior & likelihood to form posterior:

$$\pi(\theta \mid Y) \propto p(Y \mid \theta)\pi_0(\theta)$$

- Goal: learn about unobserved phenomenon (parameter) of interest θ [e.g. future claims]
- **Prior** beliefs $\pi_0(\theta)$ about the phenomenon
- Observe data Y via **model** $p(Y | \theta)$
- Combine prior & likelihood to form posterior:

$$\pi(\theta \mid Y) \propto p(Y \mid \theta)\pi_0(\theta)$$

• **Benefits:** coherent belief updates, uncertainty quantification, flexible modeling, and more

- Goal: learn about unobserved phenomenon (parameter) of interest θ [e.g. future claims]
- **Prior** beliefs $\pi_0(\theta)$ about the phenomenon
- Observe data Y via model $p(Y | \theta)$
- Combine prior & likelihood to form posterior:

$$\pi(\theta \mid Y) \propto p(Y \mid \theta)\pi_0(\theta)$$

- Benefits: coherent belief updates, uncertainty quantification, flexible modeling, and more
- **Assumption #1:** measurement model correct: observed Y has distribution $p(Y \mid \theta_{\text{true}})$

- Goal: learn about unobserved phenomenon (parameter) of interest θ [e.g. future claims]
- **Prior** beliefs $\pi_0(\theta)$ about the phenomenon
- Observe data Y via **model** $p(Y | \theta)$
- Combine prior & likelihood to form posterior:

$$\pi(\theta \mid Y) \propto p(Y \mid \theta)\pi_0(\theta)$$

- **Benefits:** coherent belief updates, uncertainty quantification, flexible modeling, and more
- **Assumption #1:** measurement model correct: observed Y has distribution $p(Y \mid \theta_{\text{true}})$
- **Assumption #2:** Prior puts sufficient mass on true parameter θ_{true}

• Data $Y = (Y_1, ..., Y_n)$, where $Y_i \sim P_{\text{true}}$

- Data $Y = (Y_1, ..., Y_n)$, where $Y_i \sim P_{\text{true}}$
- Interested in parameter that best explains distribution [e.g. mean of independent normal observations]

- Data $Y = (Y_1, ..., Y_n)$, where $Y_i \sim P_{\text{true}}$
- Interested in parameter that best explains distribution [e.g. mean of independent normal observations]
- Want sampling uncertainty [e.g. distribution of mean(Y) under Ptrue]

distribution of...

- Data $Y = (Y_1, ..., Y_n)$, where $Y_i \sim P_{\text{true}}$
- Interested in parameter that best explains distribution [e.g. mean of independent normal observations]
- Want sampling uncertainty [e.g. distribution of mean(Y) under P_{true}]
- **Bootstrap:** replace P_{true} with P_n

distribution of...

5

- Data $Y = (Y_1, ..., Y_n)$, where $Y_i \sim P_{\text{true}}$
- Interested in parameter that best explains distribution [e.g. mean of independent normal observations]
- Want sampling uncertainty [e.g. distribution of mean(Y) under Ptrue]
- Bootstrap: replace P_{true} with P_n

distribution of...

5

- Data $Y = (Y_1, ..., Y_n)$, where $Y_i \sim P_{\text{true}}$
- Interested in parameter that best explains distribution [e.g. mean of independent normal observations]
- Want sampling uncertainty [e.g. distribution of mean(Y) under P_{true}]
- Bootstrap: replace P_{true} with P_n
- Sample B bootstrap datasets to get empirical distribution [e.g. mean(Y_{boot})]

- Data $Y = (Y_1, ..., Y_n)$, where $Y_i \sim P_{\text{true}}$
- Interested in parameter that best explains distribution [e.g. mean of independent normal observations]
- Want sampling uncertainty [e.g. distribution of mean(Y) under P_{true}]
- Bootstrap: replace P_{true} with P_n
- Sample B bootstrap datasets to get empirical distribution [e.g. mean(Y_{boot})]

- Data $Y = (Y_1, ..., Y_n)$, where $Y_i \sim P_{\text{true}}$
- Interested in parameter that best explains distribution [e.g. mean of independent normal observations]
- Want sampling uncertainty [e.g. distribution of mean(Y) under P_{true}]
- Bootstrap: replace P_{true} with P_n
- Sample B bootstrap datasets to get empirical distribution [e.g. mean(Y_{boot})]
- **Benefits:** no assumptions about P_{true} , easy to use, can parallelize across B

- Data $Y = (Y_1, ..., Y_n)$, where $Y_i \sim P_{\text{true}}$
- Interested in parameter that best explains distribution [e.g. mean of independent normal observations]
- Want sampling uncertainty [e.g. distribution of mean(Y) under P_{true}]
- Bootstrap: replace P_{true} with P_n
- Sample B bootstrap datasets to get empirical distribution [e.g. mean(Y_{boot})]
- **Benefits:** no assumptions about P_{true} , easy to use, can parallelize across B
- Challenges: *B* large (1,000-100,000), finite-sample properties

• **Recall:** posterior given data Y is denoted $\pi(\theta \mid Y)$

- **Recall:** posterior given data Y is denoted $\pi(\theta \mid Y)$
- BayesBag method: Sample B bootstrap datasets and average over posteriors

$$\pi_{BB}(\theta \mid Y) = \frac{1}{B} \sum_{b=1}^{B} \pi(\theta \mid Y_{boot}^{(b)})$$

- **Recall:** posterior given data Y is denoted $\pi(\theta \mid Y)$
- BayesBag method: Sample B bootstrap datasets and average over posteriors

$$\pi_{BB}(\theta \mid Y) = \frac{1}{B} \sum_{b=1}^{B} \pi(\theta \mid Y_{boot}^{(b)})$$

 Same benefits as bootstrap: no correct model assumption, easyto-use, can parallelize across B

- **Recall:** posterior given data Y is denoted $\pi(\theta \mid Y)$
- BayesBag method: Sample B bootstrap datasets and average over posteriors

$$\pi_{BB}(\theta \mid Y) = \frac{1}{B} \sum_{b=1}^{B} \pi(\theta \mid Y_{boot}^{(b)})$$

- Same benefits as bootstrap: no correct model assumption, easyto-use, can parallelize across B
- Suffices to take B = 50 or 100

- **Recall:** posterior given data Y is denoted $\pi(\theta \mid Y)$
- BayesBag method: Sample B bootstrap datasets and average over posteriors

$$\pi_{BB}(\theta \mid Y) = \frac{1}{B} \sum_{b=1}^{B} \pi(\theta \mid Y_{boot}^{(b)})$$

- Same benefits as bootstrap: no correct model assumption, easyto-use, can parallelize across B
- Suffices to take B = 50 or 100
- Finite-sample benefits of Bayes

• Assumed model: Gaussian linear regression with conjugate priors

- Assumed model: Gaussian linear regression with conjugate priors
- ullet Data-generating distribution P_{true} : can be correct or misspecified

- Assumed model: Gaussian linear regression with conjugate priors
- ullet Data-generating distribution P_{true} : can be correct or misspecified
- ullet $heta_{
 m opt} = {
 m optimal parameter that is "closest" to <math>P_{
 m true}$

Better parameter inference with BayesBag

- Assumed model: Gaussian linear regression with conjugate priors
- ullet Data-generating distribution P_{true} : can be correct or misspecified
- ullet $heta_{
 m opt} =$ optimal parameter that is "closest" to $P_{
 m true}$
- Performance metric is difference in log posterior density at θ_{opt} :

$$\log \pi_{BB}(\theta_{\mathsf{opt}} \mid Y) - \log \pi(\theta_{\mathsf{opt}} \mid Y)$$

Better parameter inference with BayesBag

- Assumed model: Gaussian linear regression with conjugate priors
- ullet Data-generating distribution P_{true} : can be correct or misspecified
- ullet $heta_{
 m opt} =$ optimal parameter that is "closest" to $P_{
 m true}$
- Performance metric is difference in log posterior density at θ_{opt} :

incorrect

Agenda

- BayesBag for parameter inference (and prediction)
- BayesBag theory and methodology
- BayesBag for model selection

Bootstrap variance: $\operatorname{Var}\{\hat{\theta}(Y_{boot})\}$

Bootstrap variance:
$$\operatorname{Var}\{\hat{\theta}(Y_{boot})\}$$
 point estimate

Bootstrap variance: $Var\{\hat{\theta}(Y_{boot})\}$ \longrightarrow sampling uncertainty point estimate

Sample from posterior: $\,\vartheta \sim \pi(\theta \,|\, Y)\,$

Bootstrap variance: $Var\{\hat{\theta}(Y_{boot})\}$ \longrightarrow sampling uncertainty point estimate

Sample from posterior: $\vartheta \sim \pi(\theta \,|\, Y)$

Posterior variance: $Var(\vartheta \mid Y)$

Bootstrap variance: $\operatorname{Var}\{\hat{\theta}(Y_{boot})\}$ \longrightarrow sampling uncertainty point estimate

Sample from posterior: $\vartheta \sim \pi(\theta \mid Y)$

Posterior variance: $Var(\vartheta | Y)$ — model-based uncertainty

Bootstrap variance: $\operatorname{Var}\{\hat{\theta}(Y_{boot})\}$ \longrightarrow sampling uncertainty point estimate

Sample from posterior: $\vartheta \sim \pi(\theta \mid Y)$

Posterior variance: $Var(\vartheta | Y)$ — model-based uncertainty

Sample from BayesBag posterior: $\vartheta_{BB} \sim \pi_{BB}(\theta \,|\, Y)$

Bootstrap variance: $\operatorname{Var}\{\hat{\theta}(Y_{boot})\}$ \longrightarrow sampling uncertainty point estimate

Sample from posterior: $\vartheta \sim \pi(\theta \mid Y)$

Posterior variance: $Var(\vartheta | Y)$ — model-based uncertainty

Sample from BayesBag posterior: $\vartheta_{BB} \sim \pi_{BB}(\theta \,|\, Y)$

BayesBag posterior variance:

$$Var(\vartheta_{BB} \mid Y)$$

Bootstrap variance: $\operatorname{Var}\{\hat{\theta}(Y_{boot})\}$ \longrightarrow sampling uncertainty point estimate

Sample from posterior: $\vartheta \sim \pi(\theta \mid Y)$

Posterior variance: $Var(\vartheta | Y)$ — model-based uncertainty

Sample from BayesBag posterior: $\vartheta_{BB} \sim \pi_{BB}(\theta \,|\, Y)$

BayesBag posterior variance:

$$Var(\vartheta_{BB} \mid Y) = \mathbb{E}\{Var(\vartheta_{BB} \mid Y_{boot})\} + Var\{\mathbb{E}(\vartheta_{BB} \mid Y_{boot})\}$$

Bootstrap variance: $\operatorname{Var}\{\hat{\theta}(Y_{boot})\}$ \longrightarrow sampling uncertainty point estimate

Sample from posterior: $\vartheta \sim \pi(\theta \mid Y)$

Posterior variance: $Var(\vartheta | Y)$ — model-based uncertainty

Sample from BayesBag posterior: $\vartheta_{BB} \sim \pi_{BB}(\theta \,|\, Y)$

BayesBag posterior variance:

$$\operatorname{Var}(\vartheta_{BB} \mid Y) = \mathbb{E}\left\{\operatorname{Var}(\vartheta_{BB} \mid Y_{boot})\right\} + \operatorname{Var}\left\{\mathbb{E}(\vartheta_{BB} \mid Y_{boot})\right\}$$

expected posterior variance

Bootstrap variance: $Var\{\hat{\theta}(Y_{boot})\}$ \longrightarrow sampling uncertainty point estimate

Sample from posterior: $\,\vartheta \sim \pi(\theta \,|\, Y)\,$

Posterior variance: $Var(\vartheta | Y)$ model-based uncertainty

BayesBag posterior variance:

$$\operatorname{Var}(\vartheta_{BB} \mid Y) = \mathbb{E}\left\{\operatorname{Var}(\vartheta_{BB} \mid Y_{boot})\right\} + \operatorname{Var}\left\{\mathbb{E}(\vartheta_{BB} \mid Y_{boot})\right\}$$

expected posterior variance

Bootstrap variance:

$$\operatorname{Var}\{\hat{\theta}(Y_{boot})\}$$
 — sampling uncertainty point estimate

Sample from posterior: $\vartheta \sim \pi(\theta \mid Y)$

Posterior variance:

$$Var(\vartheta \mid Y)$$
 model-based uncertainty

Sample from BayesBag posterior: $V_{BB} \sim \pi_{BB}(\theta \,|\, Y)$

$$\vartheta_{BB} \sim \pi_{BB}(\theta \mid Y)$$

BayesBag posterior variance:

$$\operatorname{Var}(\vartheta_{BB} \mid Y) = \mathbb{E}\left\{\operatorname{Var}(\vartheta_{BB} \mid Y_{boot})\right\} + \operatorname{Var}\left\{\mathbb{E}(\vartheta_{BB} \mid Y_{boot})\right\}$$

expected posterior variance

variance of posterior mean

Bootstrap variance:

$$\operatorname{Var}\{\hat{ heta}(Y_{boot})\}$$
 — sampling uncertainty point estimate

Sample from posterior: $\vartheta \sim \pi(\theta \mid Y)$

Posterior variance:

$$Var(\vartheta \mid Y)$$
 — model-based uncertainty

Sample from BayesBag posterior: $V_{BB} \sim \pi_{BB}(\theta \,|\, Y)$

$$\theta_{BB} \sim \pi_{BB}(\theta \mid Y)$$

point estimate

BayesBag posterior variance:

$$\operatorname{Var}(\vartheta_{BB} \mid Y) = \mathbb{E}\left\{ \operatorname{Var}(\vartheta_{BB} \mid Y_{boot}) \right\} + \operatorname{Var}\left\{ \mathbb{E}(\vartheta_{BB} \mid Y_{boot}) \right\}$$

expected posterior variance

variance of posterior mean

Bootstrap variance: point estimate Sample from posterior: $\vartheta \sim \pi(\theta \mid Y)$ $Var(\vartheta | Y)$ model-based uncertainty Posterior variance: Sample from BayesBag posterior: $V_{BB} \sim \pi_{BB}(\theta \,|\, Y)$ BayesBag posterior variance: point estimate $\operatorname{Var}(\vartheta_{BB} \mid Y) = \mathbb{E}\left\{ \operatorname{Var}(\vartheta_{BB} \mid Y_{boot}) \right\} + \operatorname{Var}\left\{ \mathbb{E}(\vartheta_{BB} \mid Y_{boot}) \right\}$ variance of expected posterior

variance

posterior mean

Summarizing the previous slide...

Summarizing the previous slide...

Posterior variance = *model-based uncertainty*

Summarizing the previous slide...

Posterior variance = model-based uncertainty

Bootstrap variance = sampling-based uncertainty

Summarizing the previous slide...

Posterior variance = *model-based uncertainty*

Bootstrap variance = *sampling-based uncertainty*

BayesBag variance = model-based + sampling-based uncertainty

Summarizing the previous slide...

Posterior variance = *model-based uncertainty*

Bootstrap variance = sampling-based uncertainty

BayesBag variance = model-based + sampling-based uncertainty

- Summarizing the previous slide...
 - Posterior variance = model-based uncertainty
 - Bootstrap variance = sampling-based uncertainty
 - BayesBag variance = model-based + sampling-based uncertainty
- Model correct: model-based uncertainty = sampling-based uncertainty

- Summarizing the previous slide...
 - Posterior variance = *model-based uncertainty*
 - Bootstrap variance = sampling-based uncertainty
 - BayesBag variance = model-based + sampling-based uncertainty
- Model correct: model-based uncertainty = sampling-based uncertainty
 - Posterior and bootstrap variances correct

- Summarizing the previous slide...
 - Posterior variance = *model-based uncertainty*
 - Bootstrap variance = *sampling-based uncertainty*
 - BayesBag variance = model-based + sampling-based uncertainty
- Model correct: model-based uncertainty = sampling-based uncertainty
 - Posterior and bootstrap variances correct
 - BayesBag variance double-counts true uncertainty (conservative)

- Summarizing the previous slide...
 - Posterior variance = *model-based uncertainty*
 - Bootstrap variance = sampling-based uncertainty
 - BayesBag variance = model-based + sampling-based uncertainty
- Model correct: model-based uncertainty = sampling-based uncertainty
 - Posterior and bootstrap variances correct
 - BayesBag variance double-counts true uncertainty (conservative)
- Model incorrect: model-based uncertainty « sampling-based uncertainty

- Summarizing the previous slide...
 - Posterior variance = *model-based uncertainty*
 - Bootstrap variance = sampling-based uncertainty
 - BayesBag variance = model-based + sampling-based uncertainty
- Model correct: model-based uncertainty = sampling-based uncertainty
 - Posterior and bootstrap variances correct
 - BayesBag variance double-counts true uncertainty (conservative)
- Model incorrect: *model-based uncertainty* « *sampling-based uncertainty*
 - Posterior variance far too small

- Summarizing the previous slide...
 - Posterior variance = *model-based uncertainty*
 - Bootstrap variance = *sampling-based uncertainty*
 - BayesBag variance = model-based + sampling-based uncertainty
- Model correct: model-based uncertainty = sampling-based uncertainty
 - Posterior and bootstrap variances correct
 - BayesBag variance double-counts true uncertainty (conservative)
- Model incorrect: model-based uncertainty « sampling-based uncertainty
 - Posterior variance far too small
 - BayesBag variance appropriately calibrated

Posterior variance = model-based uncertainty

BayesBag variance = model-based + sampling-based uncertainty

[**H** & Miller 2019]

Posterior variance = model-based uncertainty

BayesBag variance = model-based + sampling-based uncertainty

• Mismatch index I can diagnose when data disagrees with assumed model

11

- Mismatch index I can diagnose when data disagrees with assumed model
 - -1 < I < 1

- Mismatch index I can diagnose when data disagrees with assumed model
 - -1 < I < 1
 - $I \approx 0$: no disagreement

- Mismatch index I can diagnose when data disagrees with assumed model
 - -1 < I < 1
 - $I \approx 0$: no disagreement
 - I > 0: posterior overconfident

- Mismatch index I can diagnose when data disagrees with assumed model
 - -1 < I < 1
 - $I \approx 0$: no disagreement
 - I > 0: posterior overconfident
 - I < 0: posterior under-confident

Diagnosing model-data mismatch

Posterior variance = model-based uncertainty

BayesBag variance = model-based + sampling-based uncertainty

- Mismatch index I can diagnose when data disagrees with assumed model
 - -1 < I < 1
 - $I \approx 0$: no disagreement
 - I > 0: posterior overconfident
 - I < 0: posterior under-confident

Diagnosing model-data mismatch

Posterior variance = model-based uncertainty

BayesBag variance = model-based + sampling-based uncertainty

- Mismatch index I can diagnose when data disagrees with assumed model
 - -1 < I < 1
 - $I \approx 0$: no disagreement
 - I > 0: posterior overconfident
 - I < 0: posterior under-confident
- Model criticism: mismatch index indicates when model needs improvement

Diagnosing model-data mismatch

Posterior variance = model-based uncertainty

BayesBag variance = model-based + sampling-based uncertainty

- Mismatch index I can diagnose when data disagrees with assumed model
 - -1 < I < 1
 - $I \approx 0$: no disagreement
 - I > 0: posterior overconfident
 - I < 0: posterior under-confident

Mismatch index can also detect problems with the prior

[**H** & Miller 2019]

1) compute standard posterior $\pi(\cdot \mid Y)$

- 1) compute standard posterior $\pi(\cdot \mid Y)$
 - e.g., use MCMC to get approximate samples $\theta_{(1)},\ldots,\theta_{(T)}$ from $\pi(\cdot\,|\,Y)$

12

- 1) compute standard posterior $\pi(\cdot \mid Y)$
 - e.g., use MCMC to get approximate samples $\theta_{(1)},\ldots,\theta_{(T)}$ from $\pi(\cdot\,|\,Y)$
- 2) compute bagged posterior $\pi_{BB}(\cdot \mid Y)$ using $B \approx 50$ bootstrap datasets

- 1) compute standard posterior $\pi(\cdot \mid Y)$
 - e.g., use MCMC to get approximate samples $\theta_{(1)},\ldots,\theta_{(T)}$ from $\pi(\cdot\,|\,Y)$
- 2) compute bagged posterior $\pi_{BB}(\cdot \mid Y)$ using $B \approx 50$ bootstrap datasets
 - e.g., use MCMC to get approximate samples $\theta^*_{(b,1)},\ldots,\theta^*_{(b,T)}$ from $\pi(\cdot\,|\,Y^*_{(b)})$ for $b=1,\ldots,B$

- 1) compute standard posterior $\pi(\cdot \mid Y)$
 - e.g., use MCMC to get approximate samples $\theta_{(1)},\ldots,\theta_{(T)}$ from $\pi(\cdot\,|\,Y)$
- 2) compute bagged posterior $\pi_{BB}(\cdot \mid Y)$ using $B \approx 50$ bootstrap datasets
 - e.g., use MCMC to get approximate samples $\theta^*_{(b,1)},\ldots,\theta^*_{(b,T)}$ from $\pi(\cdot\,|\,Y^*_{(b)})$ for $b=1,\ldots,B$

if Gaussian approximation to standard and bagged posteriors decent then

- 1) compute standard posterior $\pi(\cdot \mid Y)$
 - e.g., use MCMC to get approximate samples $\theta_{(1)},\ldots,\theta_{(T)}$ from $\pi(\cdot\,|\,Y)$
- 2) compute bagged posterior $\pi_{BB}(\cdot \mid Y)$ using $B \approx 50$ bootstrap datasets
 - e.g., use MCMC to get approximate samples $\theta^*_{(b,1)},\ldots,\theta^*_{(b,T)}$ from $\pi(\cdot\,|\,Y^*_{(b)})$ for $b=1,\ldots,B$
- if Gaussian approximation to standard and bagged posteriors decent then
 - 3a) compute mismatch index I

- 1) compute standard posterior $\pi(\cdot \mid Y)$
 - e.g., use MCMC to get approximate samples $\theta_{(1)},\ldots,\theta_{(T)}$ from $\pi(\cdot\,|\,Y)$
- 2) compute bagged posterior $\pi_{BB}(\cdot \mid Y)$ using $B \approx 50$ bootstrap datasets
 - e.g., use MCMC to get approximate samples $\theta^*_{(b,1)},\ldots,\theta^*_{(b,T)}$ from $\pi(\cdot\,|\,Y^*_{(b)})$ for $b=1,\ldots,B$
- if Gaussian approximation to standard and bagged posteriors decent then
 - 3a) compute mismatch index I
 - 3b) if $\mathbf{I} \gtrsim .2$, consider refining the model and returning to step 1

- 1) compute standard posterior $\pi(\cdot \mid Y)$
 - e.g., use MCMC to get approximate samples $\theta_{(1)},\ldots,\theta_{(T)}$ from $\pi(\cdot\,|\,Y)$
- 2) compute bagged posterior $\pi_{BB}(\cdot \mid Y)$ using $B \approx 50$ bootstrap datasets
 - e.g., use MCMC to get approximate samples $\theta^*_{(b,1)},\ldots,\theta^*_{(b,T)}$ from $\pi(\cdot\,|\,Y^*_{(b)})$ for $b=1,\ldots,B$
- if Gaussian approximation to standard and bagged posteriors decent then
 - 3a) compute mismatch index I
 - 3b) if $\mathbf{I} \gtrsim .2$, consider refining the model and returning to step 1
- 4) output bagged posterior computed in step 2

Agenda

- BayesBag for parameter inference (and prediction)
- BayesBag theory and methodology
- BayesBag for model selection

• **Goal:** based on data Y, select between a (finite or countable) set of models $M = \{m_1, m_2, ...\}$

- **Goal:** based on data Y, select between a (finite or countable) set of models $M = \{m_1, m_2, ...\}$
- Example: systematics

- **Goal:** based on data Y, select between a (finite or countable) set of models $M = \{m_1, m_2, ...\}$
- Example: systematics
 - Goal: learn about evolutionary history of a set of species [e.g. whales]

14

- **Goal:** based on data Y, select between a (finite or countable) set of models $M = \{m_1, m_2, ...\}$
- Example: systematics
 - Goal: learn about evolutionary history of a set of species [e.g. whales]
 - Approach: infer which phylogenetic trees are consistent with observed species characteristics Y
 [e.g. genetic data, physical features such as coloring]

- **Goal:** based on data Y, select between a (finite or countable) set of models $M = \{m_1, m_2, ...\}$
- Example: systematics
 - Goal: learn about evolutionary history of a set of species [e.g. whales]
 - Approach: infer which phylogenetic trees are consistent with observed species characteristics Y
 [e.g. genetic data, physical features such as coloring]
- Problem: Bayesian model selection still assumes some model in M is correct

• Models are $m_1 = \mathcal{N}(-1,1)$ and $m_2 = \mathcal{N}(1,1)$

- Models are $m_1 = \mathcal{N}(-1,1)$ and $m_2 = \mathcal{N}(1,1)$
- True distribution is $P_{\mathsf{true}} = \mathcal{N}(0, 1)$

- Models are $m_1 = \mathcal{N}(-1,1)$ and $m_2 = \mathcal{N}(1,1)$
- True distribution is $P_{\mathsf{true}} = \mathcal{N}(0, 1)$

- Models are $m_1 = \mathcal{N}(-1,1)$ and $m_2 = \mathcal{N}(1,1)$
- True distribution is $P_{\mathsf{true}} = \mathcal{N}(0, 1)$
- Generate datasets $Y^{(1)}, Y^{(2)}, \ldots$ of size n=1000, where $Y_i^{(i)} \sim \mathcal{N}(0,1)$.

- Models are $m_1 = \mathcal{N}(-1,1)$ and $m_2 = \mathcal{N}(1,1)$
- True distribution is $P_{\mathsf{true}} = \mathcal{N}(0, 1)$
- Generate datasets $Y^{(1)}, Y^{(2)}, \ldots$ of size n=1000, where $Y_j^{(i)} \sim \mathcal{N}(0,1)$.

$$\pi(m_1 | Y^{(1)}) = 1$$
 $\pi_{BB}(m_1 | Y^{(1)}) = 0.82$

- Models are $m_1 = \mathcal{N}(-1,1)$ and $m_2 = \mathcal{N}(1,1)$
- True distribution is $P_{\mathsf{true}} = \mathcal{N}(0, 1)$
- Generate datasets $Y^{(1)}, Y^{(2)}, \ldots$ of size n=1000, where $Y_i^{(i)} \sim \mathcal{N}(0,1)$.

- Models are $m_1 = \mathcal{N}(-1,1)$ and $m_2 = \mathcal{N}(1,1)$
- True distribution is $P_{\mathsf{true}} = \mathcal{N}(0, 1)$
- Generate datasets $Y^{(1)}, Y^{(2)}, \ldots$ of size n=1000, where $Y_i^{(i)} \sim \mathcal{N}(0, 1)$.

$$\pi(m_1 | Y^{(1)}) = 1$$
 $\pi_{BB}(m_1 | Y^{(1)}) = 0.82$

$$\pi(m_1 | Y^{(2)}) = 10^{-5}$$
 $\pi_{BB}(m_1 | Y^{(2)}) = 0.38$

• Assume two models m_1 and m_2 [e.g. two possible trees]

- Assume two models m_1 and m_2 [e.g. two possible trees]
- If models explain the data-generating distribution equally well, **hope** equal posterior probability (with enough data): $\pi(m_1 \mid Y) = \pi(m_2 \mid Y) = 1/2$

- Assume two models m_1 and m_2 [e.g. two possible trees]
- If models explain the data-generating distribution equally well, **hope** equal posterior probability (with enough data): $\pi(m_1 \mid Y) = \pi(m_2 \mid Y) = 1/2$

However....

Theorem [H & Miller 2019]

Assume m_1 and m_2 are equally good.

- Assume two models m_1 and m_2 [e.g. two possible trees]
- If models explain the data-generating distribution equally well, **hope** equal posterior probability (with enough data): $\pi(m_1 \mid Y) = \pi(m_2 \mid Y) = 1/2$

However....

Theorem [H & Miller 2019]

Assume m_1 and m_2 are equally good. Then in the large data limit,

1. For the standard posterior,

 $\pi(m_1 \mid Y) = 0$ or 1 with equal probability

- Assume two models m_1 and m_2 [e.g. two possible trees]
- If models explain the data-generating distribution equally well, **hope** equal posterior probability (with enough data): $\pi(m_1 \mid Y) = \pi(m_2 \mid Y) = 1/2$

However....

Theorem [H & Miller 2019]

Assume m_1 and m_2 are equally good. Then in the large data limit,

1. For the standard posterior,

 $\pi(m_1 \mid Y) = 0$ or 1 with equal probability

- Assume two models m_1 and m_2 [e.g. two possible trees]
- If models explain the data-generating distribution equally well, **hope** equal posterior probability (with enough data): $\pi(m_1 \mid Y) = \pi(m_2 \mid Y) = 1/2$

However....

Theorem [H & Miller 2019]

Assume m_1 and m_2 are equally good. Then in the large data limit,

1. For the standard posterior,

 $\pi(m_1 \mid Y) = 0$ or 1 with equal probability

- Assume two models m_1 and m_2 [e.g. two possible trees]
- If models explain the data-generating distribution equally well, **hope** equal posterior probability (with enough data): $\pi(m_1 \mid Y) = \pi(m_2 \mid Y) = 1/2$

However....

Theorem [H & Miller 2019]

Assume m_1 and m_2 are equally good. Then in the large data limit,

1. For the standard posterior,

 $\pi(m_1 \mid Y) = 0$ or 1 with equal probability

All posterior mass on a single, arbitrary model

- Assume two models m_1 and m_2 [e.g. two possible trees]
- If models explain the data-generating distribution equally well, **hope** equal posterior probability (with enough data): $\pi(m_1 \mid Y) = \pi(m_2 \mid Y) = 1/2$

However....

Theorem [H & Miller 2019]

Assume m_1 and m_2 are equally good. Then in the large data limit,

1. For the standard posterior,

$$\pi(m_1 \mid Y) = 0$$
 or 1 with equal probability

2. For the bagged posterior,

$$\pi_{BB}(m_1 \mid Y) \sim \text{Uniform}[0,1]$$

All posterior mass on a single, arbitrary model

- Assume two models m_1 and m_2 [e.g. two possible trees]
- If models explain the data-generating distribution equally well, **hope** equal posterior probability (with enough data): $\pi(m_1 \mid Y) = \pi(m_2 \mid Y) = 1/2$

	$\pi(m_1 \cdot)$	$\pi_{BB}(m_1 \cdot)$
Y (1)	0	0.03
Y (2)	1	0.78
Y (3)	0	0.75
Y (4)	0	0.98
Y (5)	1	0.95
Y (6)	0	0.23
:	:	:

However....

Theorem [H & Miller 2019]

Assume m_1 and m_2 are equally good. Then in the large data limit,

1. For the standard posterior,

$$\pi(m_1 \mid Y) = 0$$
 or 1 with equal probability

2. For the bagged posterior,

$$\pi_{BB}(m_1 \mid Y) \sim \text{Uniform}[0,1]$$

All posterior mass on a single, arbitrary model

BayesBag stabilizes posterior probabilities of similar models

- Assume two models m_1 and m_2 [e.g. two possible trees]
- If models explain the data-generating distribution equally well, **hope** equal posterior probability (with enough data): $\pi(m_1 \mid Y) = \pi(m_2 \mid Y) = 1/2$

	$\pi(m_1 \cdot)$	$\pi_{BB}(m_1 \cdot)$
Y (1)	0	0.03
Y (2)	1	0.78
Y (3)	0	0.75
Y (4)	0	0.98
Y (5)	1	0.95
Y (6)	0	0.23
:	:	:

However....

Theorem [H & Miller 2019]

Assume m_1 and m_2 are equally good. Then in the large data limit,

1. For the standard posterior, $\pi(m_1 \mid Y) = 0$ or 1 with equal probability

2. For the bagged posterior,

 $\pi_{BB}(m_1 \mid Y) \sim \text{Uniform}[0,1] \blacktriangleleft$

All posterior mass on a single, arbitrary model

bagged posterior mass more evenly distributed

[**H** & Miller 2019]

 Goal: infer phylogeny of 13 whale species from mitochondrial coding DNA

Minke GACCCGAACGTAATAA...ATCCGTTCCCATACTC Blue CACCCCCCGTACTAT...TGAGTCCGAATTGGAA Fin TGTCTTCTACACTCCA...ACAGGTTGTACGTCAC Grey GGGTCGCTGTAGACCA...GATACCGCTCTCACAT

 Goal: infer phylogeny of 13 whale species from mitochondrial coding DNA

 Goal: infer phylogeny of 13 whale species from mitochondrial coding DNA

 Goal: infer phylogeny of 13 whale species from mitochondrial coding DNA

- Goal: infer phylogeny of 13 whale species from mitochondrial coding DNA
- Compute posterior tree probabilities based on all,
 1st half, and 2nd half

- Goal: infer phylogeny of 13 whale species from mitochondrial coding DNA
- Compute posterior tree probabilities based on all,
 1st half, and 2nd half
- Compute overlap of 99% high probability regions

- Goal: infer phylogeny of 13 whale species from mitochondrial coding DNA
- Compute posterior tree probabilities based on all,
 1st half, and 2nd half
- Compute overlap of 99% high probability regions

- Goal: infer phylogeny of 13 whale species from mitochondrial coding DNA
- Compute posterior tree probabilities based on all, 1st half, and 2nd half
- Compute overlap of 99% high probability regions

- Goal: infer phylogeny of 13 whale species from mitochondrial coding DNA
- Compute posterior tree probabilities based on all,
 1st half, and 2nd half
- Compute overlap of 99% high probability regions

- Goal: infer phylogeny of 13 whale species from mitochondrial coding DNA
- Compute posterior tree probabilities based on all,
 1st half, and 2nd half
- Compute overlap of 99% high probability regions

- Goal: infer phylogeny of 13 whale species from mitochondrial coding DNA
- Compute posterior tree probabilities based on all,
 1st half, and 2nd half
- Compute overlap of 99% high probability regions
- 0% overlap = contradiction

• Goal: infer phylogeny of 13 whale species

- Goal: infer phylogeny of 13 whale species
- For some evolutionary models, little to no overlap

- Goal: infer phylogeny of 13 whale species
- For some evolutionary models, little to no overlap

- Goal: infer phylogeny of 13 whale species
- For some evolutionary models, little to no overlap

- Goal: infer phylogeny of 13 whale species
- For some evolutionary models, little to no overlap
- Bayesian model selection is unstable and not reproducible [Wilcox et al. 2002, Alfaro et al. 2003, Douady et al. 2003, ...]

- Goal: infer phylogeny of 13 whale species
- For some evolutionary models, little to no overlap
- Bayesian model selection is unstable and not reproducible [Wilcox et al. 2002, Alfaro et al. 2003, Douady et al. 2003, ...]
- Same problem comparing evolutionary models with data fixed

- Goal: infer phylogeny of 13 whale species
- For some evolutionary models, little to no overlap
- Bayesian model selection is unstable and not reproducible [Wilcox et al. 2002, Alfaro et al. 2003, Douady et al. 2003, ...]
- Same problem comparing evolutionary models with data fixed
- Bagged posterior model probabilities more stable and reproducible

- Goal: infer phylogeny of 13 whale species
- For some evolutionary models, little to no overlap
- Bayesian model selection is unstable and not reproducible [Wilcox et al. 2002, Alfaro et al. 2003, Douady et al. 2003, ...]
- Same problem comparing evolutionary models with data fixed
- Bagged posterior model probabilities more stable and reproducible

We show that BayesBag...

- We show that BayesBag...
 - 1. has **provably good** statistical robustness properties

- We show that BayesBag...
 - 1. has **provably good** statistical robustness properties
 - 2. empirically, demonstrates superior predictive performance (compared to standard Bayes)

- We show that BayesBag...
 - 1. has provably good statistical robustness properties
 - 2. empirically, demonstrates superior predictive performance (compared to standard Bayes)
 - 3. is easy to use and widely applicable

- We show that BayesBag...
 - 1. has provably good statistical robustness properties
 - 2. empirically, demonstrates superior predictive performance (compared to standard Bayes)
 - 3. is easy to use and widely applicable
 - 4. combines the **flexible modeling** features of Bayes with the **distributional robustness** of frequentist methods

- We show that BayesBag...
 - 1. has **provably good** statistical robustness properties
 - empirically, demonstrates superior predictive performance (compared to standard Bayes)
 - is easy to use and widely applicable
 - combines the flexible modeling features of Bayes with the distributional robustness of frequentist methods
- Future work:

- We show that BayesBag...
 - 1. has provably good statistical robustness properties
 - empirically, demonstrates superior predictive performance (compared to standard Bayes)
 - is easy to use and widely applicable
 - combines the flexible modeling features of Bayes with the distributional robustness of frequentist methods
- Future work:
 - time series / other structured data

- We show that BayesBag...
 - 1. has provably good statistical robustness properties
 - empirically, demonstrates superior predictive performance (compared to standard Bayes)
 - is easy to use and widely applicable
 - combines the flexible modeling features of Bayes with the distributional robustness of frequentist methods
- Future work:
 - time series / other structured data
 - speeding up computation

- We show that BayesBag...
 - 1. has provably good statistical robustness properties
 - empirically, demonstrates superior predictive performance (compared to standard Bayes)
 - is easy to use and widely applicable
 - combines the flexible modeling features of Bayes with the distributional robustness of frequentist methods
- Future work:
 - time series / other structured data
 - speeding up computation
- On arXiv very soon (if you want a heads up: jhuggins@hsph.harvard.edu)

- We show that BayesBag...
 - 1. has provably good statistical robustness properties
 - empirically, demonstrates superior predictive performance (compared to standard Bayes)
 - is easy to use and widely applicable
 - combines the flexible modeling features of Bayes with the distributional robustness of frequentist methods
- Future work:
 - time series / other structured data
 - speeding up computation
- On arXiv very soon (if you want a heads up: jhuggins@hsph.harvard.edu)

Thank you

• Let $\Delta_n \triangleq \sum_{i=1}^n \log p(Y_i \mid m_1) - \log p(Y_i \mid m_2)$

• Let
$$\Delta_n \triangleq \sum_{i=1}^n \log p(Y_i \mid m_1) - \log p(Y_i \mid m_2)$$

$$\delta_i$$

• Let
$$\Delta_n \triangleq \sum_{i=1}^n \log p(Y_i \mid m_1) - \log p(Y_i \mid m_2)$$

$$\delta_i$$

• Then $\pi(m_1 | Y) = (1 + \exp\{-\Delta_n\})^{-1}$

• Let
$$\Delta_n \triangleq \sum_{i=1}^n \log p(Y_i \mid m_1) - \log p(Y_i \mid m_2)$$

$$\delta_i$$

- Then $\pi(m_1 | Y) = (1 + \exp\{-\Delta_n\})^{-1}$
- By assumption, $\mathbb{E}[\delta_i] = 0$ but $\sigma^2 = \operatorname{Var}(\delta_i) > 0$

• Let
$$\Delta_n \triangleq \sum_{i=1}^n \log p(Y_i \mid m_1) - \log p(Y_i \mid m_2)$$

$$\delta_i$$

- Then $\pi(m_1 | Y) = (1 + \exp\{-\Delta_n\})^{-1}$
- By assumption, $\mathbb{E}[\delta_i] = 0$ but $\sigma^2 = \operatorname{Var}(\delta_i) > 0$
- Hence, Δ_n is a random walk with $\mathbb{E}[\Delta_n^2] = \sigma^2 n$

• Let
$$\Delta_n \triangleq \sum_{i=1}^n \log p(Y_i \mid m_1) - \log p(Y_i \mid m_2)$$

$$\delta_i$$

- Then $\pi(m_1 | Y) = (1 + \exp\{-\Delta_n\})^{-1}$
- By assumption, $\mathbb{E}[\delta_i] = 0$ but $\sigma^2 = \operatorname{Var}(\delta_i) > 0$
- Hence, Δ_n is a random walk with $\mathbb{E}[\Delta_n^2] = \sigma^2 n$
- In other words, with very high probability, $|\Delta_n| = \Theta(n^{1/2})$

• Let
$$\Delta_n \triangleq \sum_{i=1}^n \log p(Y_i \mid m_1) - \log p(Y_i \mid m_2)$$

$$\delta_i$$

- Then $\pi(m_1 | Y) = (1 + \exp\{-\Delta_n\})^{-1}$
- By assumption, $\mathbb{E}[\delta_i] = 0$ but $\sigma^2 = \operatorname{Var}(\delta_i) > 0$
- Hence, Δ_n is a random walk with $\mathbb{E}[\Delta_n^2] = \sigma^2 n$
- In other words, with very high probability, $|\Delta_n| = \Theta(n^{1/2})$

ullet Therefore, there is overwhelming evidence of order $n^{1/2}$ for either m_1 or m_2

• **Have:** samples $Y = (Y_1, ..., Y_n)$

- **Have:** samples $Y = (Y_1, ..., Y_n)$
- Goal: predict future outcome based on Y [i.e. regression]

- **Have:** samples $Y = (Y_1, ..., Y_n)$
- Goal: predict future outcome based on Y [i.e. regression]

- **Have:** samples $Y = (Y_1, ..., Y_n)$
- Goal: predict future outcome based on Y [i.e. regression]
- Problem: prediction algorithm is unstable [e.g. regression trees]

- **Have:** samples $Y = (Y_1, ..., Y_n)$
- **Goal:** predict future outcome based on *Y* [i.e. regression]
- Problem: prediction algorithm is unstable [e.g. regression trees]
- Bagging: stabilize predictions by aggregating (averaging) over predictions based on bootstrapped datasets

- **Have:** samples $Y = (Y_1, ..., Y_n)$
- Goal: predict future outcome based on Y [i.e. regression]
- Problem: prediction algorithm is unstable [e.g. regression trees]
- Bagging: stabilize predictions by aggregating (averaging) over predictions based on bootstrapped datasets
- Like bagging, BayesBag seems to work well with B = 50 or 100

